Journal of Organometallic Chemistry, 436 (1992) 207-222 Elsevier Sequoia S.A., Lausanne JOM 22614

Umsetzungen von Molybdän-Arsen-Tetrahedranen mit $Fe_2(CO)_9$ und $Fe_3(CO)_{12}$

Marc Gorzellik, Bernard Nuber und Manfred L. Ziegler[†]

Anorg. Chem. Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg (Deutschland)

(Eingegangen den 16. Dezember 1991)

Abstract

By co-photolysis of $(\mu_3$ -As)(C₅H₄R)₃Mo₃(CO)₆ (R = H (1a), R = Me (1b)) with Fe₃(CO)₁₂ (2) the clusters $(\mu_4$ -As)(C₅H₄R)₃Fe₃Mo₃(CO)₁₇ (R = H) (3a), R = Me (3b)), $(\mu_4$ -As)-(C₅H₄R)₃FeMo₃(CO)₁₀ (R = H (4a), R = Me (4b)) and $(\mu_4$ -As)(C₅H₄R)₃Fe₂Mo₃(CO)₁₂ (R = H (5a), R = Me (5b)) were synthesized. Thermal reaction of As₂Cp₂Mo₂(CO)₄ (6a) with Fe₂(CO)₉ (7) or Fe₃(CO)₁₂ (2) yields the complex $(\mu_4$ -As)₂Cp₂Fe₃Mo₂(CO)₁₅ (8) having the structure of a square pyramid. Co-photolysis of As₂Cp'₂Mo₂(CO)₄ (6b) (Cp' = C₅H₄Me) with Fe₂(CO)₉ (7) leads to the cluster As₂Cp'₂Mo₂Fe₄(CO)₁₇ (9) with a μ_5 -As moiety. X-ray diffraction studies of 3a, 5b, 8 and 9 are described.

Zusammenfassung

Durch Kophotolyse von $(\mu_3$ -As)(C₅H₄R)₃Mo₃(CO)₆ (R = H (1a), R = Me (1b)) mit Fe₃(CO)₁₂ (2) wurden die Verbindungen $(\mu_4$ -As)(C₅H₄R)₃Fe₃Mo₃(CO)₁₇ (R = H (3a), R = Me (3b)), $(\mu_4$ -As)-(C₅H₄R)₃FeMo₃(CO)₁₀ (R = H (4a), R = Me (4b)) und $(\mu_4$ -As)(C₅H₄R)₃Fe₂Mo₃(CO)₁₂ (R = H (5a), R = Me (5b)) erhalten. Die thermische Umsetzung von As₂Cp₂Mo(CO)₄ (6a) mit Fe₂(CO)₉ (7) oder Fe₃(CO)₁₂ (2) führt zu dem Komplex $(\mu_4$ -As)₂Cp₂Fe₃Mo₂(CO)₁₅ (8) mit der Grundstruktur einer quadratischen Pyramide. Die Kophotolyse von As₂Cp'₂Mo₂(CO)₄ (6b) (Cp' = C₅H₄Me) mit Fe₂(CO)₉ (7) führt zu dem Cluster As₂Cp'₂Mo₂Fe₄(CO)₁₇ (9), der einfünffach koordiniertes Arsenatom enthält. Von 3a, 5b, 8 und 9 wurden Röntgenstrukturanalysen durchgeführt.

Einleitung

Die große Reaktionsfähigkeit des Clusters $(\mu_3$ -As)Cp₃Mo₃(CO)₆ (1a) [1] wurde bereits mehrfach diskutiert [2]. Bei den Umsetzungen von 1a mit reaktiven Organometallfragmenten konnten Cluster verschiedener Geometrien (Tetraeder-, Bitetrahedran-, Spiro-, "butterfly"-Geometrie, u.v.a.) synthetisiert werden [2].

Correspondence to: Prof. Dr. Gottfried Huttner, Anorg. Chem. Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg, Deutschland.

[†] Verstorben am 30. April 1991.

208

Auch die Reaktion von $(\mu_3$ -As)Cp₃Mo₃(CO)₆ (1a) und der homologen Wolframverbindung $(\mu_3$ -As)Cp₃W₃(CO)₆ mit Fe(CO)₅ oder Fe₂(CO)₉ (7) wurde bereits beschrieben [2a,3]. Hierbei werden ausschließlich Tetrahedrane mit zentralem MFe₂As- und M₂FeAs-Gerüst (M = Mo oder W) erhalten.

Wir berichten nun über die Umsetzungen von 1a und 1b mit $Fe_3(CO)_{12}$ (2), die zu völlig anderen Produkten führen. Durch Anlagerung von $Fe_3(CO)_{11}$ bzw. $Fe(CO)_4$ an das Arsenatom der Ausgangsverbindung entstehen die Lewis-Säure-Base-Adukte 3a/b und 4a/b, während Verbindung 5a/b formal durch Austausch von Clusterbausteinen gebildet wird. Umsetzungen von Eisencarbonylen mit $As_2Cp_2Mo_2(CO)_4$ (6a) wurden bisher noch nicht durchgeführt. Hier diskutieren wir die thermische Umsetzung von 6a mit $Fe_2(CO)_9$ (7) bzw. $Fe_3(CO)_{12}$ (2), die den Komplex (μ_4 -As)₂Cp₂Fe₃Mo₂(CO)₁₅ (8) liefert. Das Fe_3Mo_2 -Fragment von 8 bildet eine quadratische Pyramide. Hingegen führt die photochemische Reaktion von $As_2Cp'_2Mo_2(CO)_4$ (6b) und $Fe_2(CO)_9$ (7) zu dem Komplex $As_2Cp'_2$ $Mo_2Fe_4(CO)_{17}$ (9), der ein fünffach koordiniertes Arsenatom neben einem vierfachkoordinierten Arsenatom aufweist.

Alle Produkte wurden spektroskopisch charakterisiert (IR, NMR, MS); 3a, 5b, 8 und 9a wurden röntgenstrukturanalytisch charakterisiert.

Ergebnisse und Diskussion

Kophotolyse von μ_3 -AsCp₃Mo₃(CO)₆ (1a) bzw. μ_3 -AsCp'₃Mo₃(CO)₆ (1b) mit Fe₃(CO)₁₂ (2)

Wie wir bereits früher zeigen konnten, entsteht bei der thermischen Reaktion von $(\mu_3$ -As)Cp₃Mo₃(CO)₆ (1a) mit Fe(CO)₅ der Hydridocluster [CpMo(CO)₂Fe₂ (CO)₆(μ -H)]As[MoCp(CO)₃], der als zentrale Baugruppe ein Fe₂MoAs-Tetrahedrangerüst enthält. Zusätzlich ist am Arsen ein CpMo(CO)₃-Fragment koordiniert [2a]. Hingegen führt die Reaktion von $(\mu_3$ -As)Cp₃Mo₃(CO)₆ (1a) mit Fe₂(CO)₉ (7) zur Bildung des Tetrahedrans [CpMo(CO)₂]₂(μ -CO)₃-[Fe(CO)₂][μ_3 -AsMoCp(CO)₃]. Hier besteht das Grundgerüst aus einer Mo₂FeAs-Einheit, wobei zusätzlich am Arsen ein CpMo(CO)₃-Fragment angelagert ist. Während bei den Reaktionen von 1a mit Fe(CO)₅ und 2 durch Austausch von Clusterbausteinen (Mo-Fragment gegen Fe-Fragment) wiederum Tetrahedrane erhalten werden, werden bei der Kophotolyse von 1a/b mit Fe₃(CO)₁₂ (2) völlig andere Produkte gebildet (Schema 1).

Durch Anlagerung von Fe₃(CO)₁₁ an das Arsenatom des Ausgangstetrahedrans ensteht der Komplex **3a/b**, durch Anlagerung eines Fe(CO)₄-Fragmentes, das durch photolytisch bedingten Zerfall von 2 entsteht, wird **4a/b** gebildet. In diesen Verbindungen liegt die Mo₃As-Einheit der Ausgangsverbindung **1a/b** nahezu unverändert vor. Zusätzlich erfolgt die Bildung von **5a/b**, die formal als Addition eines Fe₂(CO)₆-Fragments an das "geöffnete" Mo₃As-Tetrahedrangerüst betrachtet werden kann.

Die Produkte 3a/b-5a/b wurden spektroskopisch (IR, NMR, MS) und elementaranalytisch charakterisiert; zusätzlich wurden an 3a, 4a und 5b Röntgenstrukturanalysen ausgeführt. 3a kristallisiert triklin in der Raumgruppe $P\overline{1}$. Die Moleküldarstellung von 3a zeigt Fig. 1. Das Grundgerüst von 3a besteht aus einem Mo₃As-Tetraeder an dessen Arsenatom ein Fe₃(CO)₁₁-Dreiring koordiniert ist. Aufgrund einer statistischen Verteilung (2/1) der drei Molybdänatome samt ihrer

Liganden konnte die Struktur nicht verfeinert werden. Deshalb werden keine Standardabweichungen mitgeteilt.

Die Gerüstgeometrie ist dennoch eindeutig festgelegt. Die gefundenen Abstände und Winkel belegen durch Vergleich mit bekannten Strukturdaten die Richtigkeit des getroffenen Lösungsansatzes. Im folgenden soll der Mo(4)-Mo(5)-Mo(6)-Dreiring diskutiert werden; er nimmt 2/3 der Molybdänpositionen ein. Die Bindungsabstände und -winkel des Mo₃As-Tetrahedrans sind vergleichbar mit

Fig. 1. Moleküldarstellung von 3a. Die $Cp_3Mo_3(CO)_6$ -Einheit besetzt statistisch (2/1) zwei Lagen; die Ligandenperipherie ist für Mo(4, 5 und 6) angegeben, für Mo(1, 2 und 3) sind nur die Mo-Lagen wiedergegeben.

denen des unsubstituierten Tetrahedrans **1a** [2a]. Die Struktur des Eisendreiringes in **3a** entspricht mit Fe-Fe-Abständen von 255.7 bis 269.2 pm (vgl. Fe₃(CO)₁₂: 255.8(1) bis 268.3(2) pm) und Bindungswinkeln von 56.3 bis 62.5° (vgl. Fe₃(CO)₁₂: 57.0(0) bis 61.4(0)°), wie auch mit den beiden μ_2 -verbrückenden CO-Gruppen im wesentlichen der des Edukts Fe₃(CO)₁₂ (2). Die terminalen Fe-C(CO)-Abstände liegen mit 174.7 bis 186.6 pm im Erwartungsbereich [4,5]. Zwei Carbonylgruppen zwischen Fe(1) und Fe(2) sind μ_2 -verbrückend (ν (CO) 1817 cm⁻¹) mit Fe-C(CO)-Abständen zwischen 187.0 und 198.4 pm (vgl. Fe₃(CO)₁₂: 193(2) bis 221(3) pm [5a,5b]). Der Fe-As-Bindungsabstand liegt mit 242.0 pm in dem Bereich, der auch für vergleichbare Verbindungen beobachtet wurde [3].

Versuche, an Einkristallen von **4a** eine Röntgenstrukturanalyse durchzuführen, schlugen fehl, da sich die Verbindung bei der Messung der Reflexintensitäten zersetzte. Der unter diesen Bedingungen erhaltene Datensatz (Kristallsystem: triklin; Raumgruppe: P1; Gitterkonstanten (pm; °): 911.4(2), 963.2(3), 1740.0(6); 101.6(0), 93.5(0), 112.3(0); Volumen: 1368.3 pm³) erlaubte lediglich eine Bestimmung des Metallgerüsts. Demnach bildet ein Mo₃As-Tetrahedran das Grundgerüst, wobei am Arsen zusätzlich ein Eisenfragment koordiniert ist. In Kombination mit der spektroskopischen Untersuchung von **4a/b** erscheint so der in Schema 1 gezeigte Strukturvorschlag plausibel.

5b kristallisiert monoklin in der Raumgruppe $P2_1/c$ (Nr. 14). In Tab. 1 sind die Ortsparameter und thermischen Parameter zusammengefaßt, in Tab. 2 sind ausgewählte Bindungsabstände und -winkel gegeben. Die Wadeschen Clusterregeln [6] ermöglichen eine zutreffende Beschreibung von **5b** als *closo*-Cluster (2n + 2 Gerüstbindungselektronen, n = 5). Demnach entspricht das Mo₂Fe₂As-Grundgerüst von **5b** einer trigonalen Bipyramide, wobei zusätzlich ein CpMo(CO)₃-Fragment am Arsen koordiniert ist (Fig. 2).

Sämtliche bindenden Metallabstände in **5b** liegen im Einfachbindungsbereich [2a,4]. Die Mo-Atome des Mo₂Fe₂As-Clusters weisen neben einem Cp'-Liganden je eine terminale (C(1)O(1), C(3)O(3) sowie eine semi-verbrückende (C(2)O(2)) Carbonylgruppe auf. Die Abstände Mo-C(Cp') (im Mittel 230(2) bzw. 234(1) pm) sind im gleichen Bereich wie bei ähnlich gebauten Verbindungen (230 bis 235 pm) [2a]. Die terminalen Mo-C(CO)-Abstände liegen zwischen 193.5(17) und 200.0(13) pm [vgl. 2a], während die Mo-C-Abstände der semi-verbrückenden Carbonylgruppe 198.3(13) (Mo(1)-C(2)) und 241.5(15) pm (Mo(2)-C(2)) betragen. Der Asymmetriefaktor α beträgt für diese Carbonylgruppe 0.22. Für semi-verbrückende CO-Gruppen sollte α zwischen 0.1 und 0.5 liegen [7]. Auch die Bindungswinkel Mo(1)-C(2)-O(2) (152.1(12)°) und Mo(2)-C(2)-O(2) (126.0(10)°) sprechen für das Vorliegen einer semi-verbrückenden Carbonylgruppe.

Eine Kante der Dreiecksfläche des trigonal-bipyramidalen Mo_2Fe_2As -Gerüsts bildet ein $Fe_2(CO)_6$ -Fragment. Die Fe-C(CO)-Abstände liegen zwischen 173.6(16) und 180.4(17) pm. Bei vergleichbaren Verbindungen wurden Fe-C(CO)-Abstände zwischen 170(3) und 192(4) pm beobachtet [4].

Thermische Reaktion von $As_2Cp_2Mo_2(CO)_4$ (6a) mit $Fe_2(CO)_9$ (7) bzw. $Fe_3(CO)_{12}$ (2)

Die thermische Reaktion von $As_2Cp_2Mo_2(CO)_4$ (6a) mit $Fe_2(CO)_9$ (7) bzw. $Fe_3(CO)_{12}$ (2) in Toluol führt in guter Ausbeute zu dem Cluster (μ_4 -As)_2Cp_2Fe_3Mo_2(CO)_{15} (8) (Schema 2). 8 wurde spektroskopisch und röntgenstrukturanalytisch charakterisiert.

Mc(1) 6393(1) 3612(1) 6950(1) 36(1) Mc(2) 6977(1) 2045(1) 6266(1) 32(1) Mc(3) 10166(1) 2249(1) 5085(1) 49(1) As(1) 8654(1) 266(1) 5824(1) 34(1) Fe(1) 8932(2) 3368(1) 6787(1) 34(1) C(1) 6908(13) 2703(10) 7663(6) 49(6) O(1) 7128(11) 2226(7) 8095(5) 79(5) C(2) 5132(14) 2723(9) 6489(6) 48(6) O(2) 4091(9) 2429(7) 6332(5) 67(5) C(3) 5264(10) 2122(7) 4847(5) 79(5) C(4) 10246(15) 4020(11) 6712(7) 64(7) C(4) 10246(15) 4020(1) 7532(7) 71(8) C(5) 9766(16) 2474(12) 7257(7) 71(8) C(6) 8874(13) 3994(10) 7532(7) 55(6) C(7) 5490(14) 4006(9) 555(6) 43(6) C(7) 5490(14) 4006(9)	Atom	x	у	z	$U_{\rm eq}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mo(1)	6393(1)	3612(1)	6950(1)	36(1)	
Mc(3)10166(1)224(1)5085(1)49(1)As(1)8654(1)2661(1)5824(1)34(1)Fc(1)8932(2)3368(1)6826(1)41(1)Fc(2)7134(2)7786(1)5787(1)34(1)C(1)6908(13)2703(10)7663(6)49(6)C(2)5132(14)2723(9)6489(6)48(6)C(2)4091(9)2429(7)6332(5)67(5)C(3)5911(13)2194(9)5374(7)50(6)C(4)10246(15)4020(1)6655(6)111(7)C(4)1101(10)4407(9)66655(6)111(7)C(5)9766(16)2474(12)7257(7)71(8)C(5)9766(16)2474(12)7257(7)75(6)C(7)5490(14)4006(9)5565(6)43(6)C(7)5490(14)4006(9)5565(6)43(6)C(7)5490(14)4006(9)5565(6)43(6)C(7)5490(14)406(9)5565(6)43(6)C(7)5490(14)406(9)5565(6)43(6)C(7)5490(14)406(9)5565(6)33(7)C(8)7209(13)3987(9)4975(7)53(6)C(8)7209(13)3987(9)4975(7)53(6)C(8)7209(13)3987(9)4377(5)100(6)C(11)06241(6)1070(11)4830(9)85(9)C(11)1062416)1070(11)4830(9)85(9)C(12)1097315)1698(12)5936(9)77	Mo(2)	6977(1)	2045(1)	6266(1)	32(1)	
As(1) $8654(1)$ $261(1)$ $5824(1)$ $34(1)$ Fe(1) $8932(2)$ $3368(1)$ $6826(1)$ $41(1)$ C(1) $6908(13)$ $2703(10)$ $76336(6)$ $49(6)$ O(1) $7128(11)$ $2226(7)$ $8095(5)$ $79(5)$ C(2) $5132(14)$ $2723(9)$ $6489(6)$ $48(6)$ O(2) $4091(9)$ $2429(7)$ $6332(5)$ $67(5)$ C(3) $5911(13)$ $2194(9)$ $5374(7)$ $50(6)$ O(3) $5264(10)$ $2122(7)$ $4847(5)$ $79(5)$ C(4) $10246(15)$ $4020(11)$ $6712(7)$ $64(7)$ O(4) $110(10)$ $407(9)$ $6655(6)$ $111(7)$ C(5) $9766(16)$ $2474(12)$ $7257(7)$ $71(8)$ O(5) $10355(12)$ $1885(9)$ $7549(6)$ $114(7)$ C(6) $8874(13)$ $3994(10)$ $7532(7)$ $55(6)$ O(6) $9134(10)$ $4346(7)$ $8039(5)$ $78(5)$ C(7) $5490(14)$ $4006(9)$ $555(6)$ $33(6)$ C(7) $5490(14)$ $4006(9)$ $555(6)$ $33(6)$ C(8) $7209(13)$ $3987(9)$ $4975(7)$ $53(6)$ C(9) $7722(13)$ $4823(1)$ $6135(7)$ $53(7)$ O(9) $8027(10)$ $556(7)$ $6301(5)$ $74(5)$ C(10) $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ O(10) $7531(1)$ $1393(10)$ $6425(6)$ $132(8)$ O(11) $10967(13)$ $371(8)$ $698(7)$ 4	Mo(3)	10166(1)	2249(1)	5085(1)	49(1)	
Fe(1) $8932(2)$ $3368(1)$ $6826(1)$ $41(1)$ F(2) $7134(2)$ $3786(1)$ $5787(1)$ $34(1)$ C(1) $6908(13)$ $2703(10)$ $7663(6)$ $496(6)$ O(1) $7128(11)$ $2226(7)$ $8095(5)$ $79(5)$ C(2) $5132(14)$ $2723(9)$ $6489(6)$ $48(6)$ O(2) $4091(9)$ $2429(7)$ $6332(5)$ $67(5)$ C(3) $5911(13)$ $2194(9)$ $5374(7)$ $50(6)$ O(3) $5264(10)$ $212(7)$ $4847(5)$ $79(5)$ C(4) $1100(10)$ $407(9)$ $6665(6)$ $111(7)$ O(4) $1110(10)$ $407(9)$ $6665(6)$ $111(7)$ C(5) $9766(16)$ $2474(12)$ $7257(7)$ $71(8)$ O(5) $10355(12)$ $1885(9)$ $7549(6)$ $114(7)$ C(6) $8874(13)$ $3994(10)$ $7532(7)$ $55(6)$ O(6) $9134(10)$ $436(7)$ $8039(5)$ $78(5)$ C(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ C(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ C(8) $7175(1)$ $4143(8)$ $436(5)$ $93(6)$ C(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ C(8) $7175(1)$ $1438(8)$ $436(5)$ $93(6)$ C(7) $4437(9)$ $4157(7)$ $537(7)$ $74(5)$ C(10) $753(1)$ $1698(12)$ $5936(9)$ $77(9)$ O(8) $7175(1)$ $1403(9)$ $85(9)$ $7179(7)$ <td>As(1)</td> <td>8654(1)</td> <td>2661(1)</td> <td>5824(1)</td> <td>34(1)</td> <td></td>	As(1)	8654(1)	2661(1)	5824(1)	34(1)	
Fe(2)7134(2)3786(1)5787(1)34(1)C(1)6908(13)2703(10)7663(6)49(6)O(1)7128(11)2226(7)8095(5)79(5)C(2)5132(14)2723(9)6489(6)48(6)O(2)4091(9)2429(7)6332(5)67(5)C(3)591(13)2124(9)5374(7)50(6)O(3)5264(10)2122(7)4847(5)79(5)C(4)10246(15)4020(11)6712(7)64(7)O(4)1101(10)4407(9)6665(6)111(7)C(5)9766(16)2474(12)7257(7)71(8)O(5)10355(12)1885(9)7549(6)114(7)C(6)8874(13)3994(10)7532(7)55(6)O(6)9134(10)4346(7)8039(5)78(5)C(7)5490(14)4006(9)5565(6)43(6)C(7)5490(14)4006(9)5565(6)43(6)C(7)5490(14)4006(9)5565(6)43(6)C(7)5490(14)4006(9)5567(7)53(7)C(8)7175(11)4143(8)4436(5)93(6)C(9)7722(13)4823(11)6135(7)53(7)C(9)8027(10)556(7)6301(5)74(5)C(10)7581(11)1369(8)4377(5)100(6)C(11)10624(16)1070(11)4830(9)85(9)O(10)7581(11)1369(8)637(7)54(7)C(12)6194(15)4170(10)7537(8) <td< td=""><td>Fe(1)</td><td>8932(2)</td><td>3368(1)</td><td>6826(1)</td><td>41(1)</td><td></td></td<>	Fe(1)	8932(2)	3368(1)	6826(1)	41(1)	
C(1) $6908(13)$ $2703(10)$ $7663(6)$ $49(6)$ O(1) $7128(11)$ $2226(7)$ $8095(5)$ $79(5)$ C(2) $5132(14)$ $2723(9)$ $6489(6)$ $48(6)$ O(2) $4091(9)$ $2429(7)$ $6332(5)$ $67(5)$ C(3) $5911(13)$ $2194(9)$ $5374(7)$ $50(6)$ O(3) $3264(10)$ $2122(7)$ $4847(5)$ $79(5)$ C(4) $10246(15)$ $4020(11)$ $6712(7)$ $64(7)$ O(4) $11101(10)$ $4407(9)$ $6665(6)$ $1114(7)$ C(5) $9766(16)$ $2474(12)$ $7257(7)$ $71(8)$ O(5) $10355(12)$ $1885(9)$ $7549(6)$ $114(7)$ C(6) $8874(13)$ $3994(10)$ $7532(7)$ $55(6)$ O(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ C(7) $5490(14)$ $4006(9)$ $5565(6)$ $43(6)$ O(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ O(8) $7175(11)$ $4143(8)$ $4436(5)$ $93(6)$ C(9) $7732(13)$ $4823(11)$ $6135(7)$ $53(6)$ O(9) $8027(10)$ $556(7)$ $6301(5)$ $74(5)$ C(10) $850(17)$ $1000(6)$ $77(9)$ O(10) $781(11)$ $1369(8)$ $4377(5)$ 10006 C(11) $10967(13)$ $371(8)$ $4685(7)$ 14009 C(12) $10973(15)$ $1698(12)$ $593(6)$ $77(9)$ O(11) $10967(13)$ $371(8)$ $4685(7)$ $49(6)$ <td>Fe(2)</td> <td>7134(2)</td> <td>3786(1)</td> <td>5787(1)</td> <td>34(1)</td> <td></td>	Fe(2)	7134(2)	3786(1)	5787(1)	34(1)	
O(1)7128(11)2226(7)8095(5)79(5) $C(2)$ 5132(14)2723(9)6489(6)48(6) $O(2)$ 4091(9)2429(7)6332(5)67(5) $C(3)$ 5911(13)2194(9)5374(7)50(6) $O(3)$ 5264(10)2122(7)4847(5)79(5) $C(4)$ 10246(15)4020(11)6712(7)64(7) $O(4)$ 1101(10)4407(9)6665(6)111(7) $C(5)$ 9766(16)2474(12)7257(7)71(8) $O(5)$ 10355(12)1885(9)7549(6)114(7) $C(6)$ 874(13)3994(10)7532(7)55(6) $O(6)$ 9134(10)4346(7)8039(5)78(5) $C(7)$ 5490(14)4006(9)5565(6)43(6) $O(7)$ 4437(9)4157(7)5337(5)64(5) $C(8)$ 7209(13)3987(9)4975(7)53(6) $O(8)$ 7175(11)4143(8)4436(5)93(6) $O(9)$ 8027(10)5566(7)6301(5)74(5) $O(9)$ 8027(10)5566(7)6301(5)74(5) $O(10)$ 7831(1)1339(10)4425(6)132(8) $O(11)$ 10624(16)1070(11)4830(9)85(9) $O(11)$ 10624(16)1070(11)4830(9)85(9) $O(11)$ 10624(16)1070(11)4830(9)85(9) $O(12)$ 10973(15)1698(12)5936(9)77(9) $O(12)$ 10973(15)1698(12)5936(9)77(9) $O(12)$	C(1)	6908(13)	2703(10)	7663(6)	49(6)	
C(2) $5132(14)$ $2723(9)$ $6489(6)$ $48(6)$ O(2) $4091(9)$ $2429(7)$ $6332(5)$ $67(5)$ O(3) $5264(10)$ $2122(7)$ $4847(5)$ $79(5)$ C(4) $10246(15)$ $4020(11)$ $6712(7)$ $64(7)$ O(4) $11101(10)$ $4407(9)$ $6665(6)$ $111(7)$ C(5) $9766(16)$ $2474(12)$ $7257(7)$ $71(8)$ O(5) $10355(12)$ $1885(9)$ $7549(6)$ $114(7)$ C(6) $8874(13)$ $3994(10)$ $7532(7)$ $55(6)$ O(6) $9134(10)$ $4346(7)$ $8039(5)$ $78(5)$ C(7) $5490(14)$ $4006(9)$ $556(6)$ $443(6)$ O(7) $4437(9)$ $4157(7)$ $5337(5)$ $644(5)$ C(8) $7175(11)$ $4133(8)$ $4436(5)$ $93(6)$ C(9) $7732(13)$ $4823(11)$ $6135(7)$ $53(7)$ O(9) $8027(10)$ $556(7)$ $6301(5)$ $74(5)$ C(10) $8501(7)$ $1702(10)$ $4657(7)$ 6668 O(10) $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ C(11) $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ O(11) $10957(13)$ $371(8)$ $4685(7)$ 14009 C(12) $10973(15)$ $1698(12)$ $5936(9)$ $77(9)$ O(12) $11052(11)$ $13371(8)$ $4685(7)$ $49(6)$ C(21) $501(16)$ $737(7)$ $49(6)$ C(22) $6194(15)$ $672(9)$ $6173(7)$ $49(6)$ <	O(1)	7128(11)	2226(7)	8095(5)	79(5)	
O(2) $4091(9)$ $2429(7)$ $6332(5)$ $67(5)$ $C(3)$ $5911(13)$ $2194(9)$ $5374(7)$ $506(6)$ $O(3)$ $5264(10)$ $2122(7)$ $4847(5)$ $79(5)$ $C(4)$ $10246(15)$ $4407(9)$ $6665(6)$ $111(7)$ $O(4)$ $11101(10)$ $4407(9)$ $6665(6)$ $111(7)$ $O(5)$ $9766(16)$ $2474(12)$ $7257(7)$ $71(8)$ $O(5)$ $10355(12)$ $1885(9)$ $7549(6)$ $114(7)$ $O(6)$ $9134(10)$ $4346(7)$ $8039(5)$ $7855(6)$ $O(6)$ $9134(10)$ $4346(7)$ $8039(5)$ $78(5)$ $C(7)$ $5490(14)$ $4006(9)$ $5556(6)$ $43(6)$ $O(7)$ $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ $C(8)$ $7209(13)$ $3987(9)$ $4975(7)$ $53(6)$ $O(8)$ $7175(11)$ $4143(8)$ $4436(5)$ $93(6)$ $C(9)$ $732(13)$ $4823(11)$ $6135(7)$ $53(7)$ $O(9)$ $8027(10)$ $5566(7)$ $6301(5)$ $74(5)$ $O(10)$ $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ $O(11)$ $10973(15)$ $1698(12)$ $537(8)$ $77(9)$ $O(12)$ $11525(11)$ $1393(10)$ $6425(6)$ $132(8)$ $O(12)$ $11525(11)$ $1393(10)$ $6425(6)$ $132(8)$ $O(12)$ $11525(11)$ $1393(10)$ $6428(7)$ $48(7)$ $C(23)$ $6463(13)$ $5085(9)$ $7379(7)$ $49(6)$ $C(24)$ <td>C(2)</td> <td>5132(14)</td> <td>2723(9)</td> <td>6489(6)</td> <td>48(6)</td> <td></td>	C(2)	5132(14)	2723(9)	6489(6)	48(6)	
C(3) $5911(13)$ $2194(9)$ $5374(7)$ $506)$ O(3) $5264(10)$ $2122(7)$ $4847(5)$ $79(5)$ C(4) $10246(15)$ $4020(11)$ $6712(7)$ $64(7)$ O(4) $11101(10)$ $4407(9)$ $6665(6)$ $111(7)$ C(5) $9766(16)$ $2474(12)$ $7257(7)$ $71(8)$ O(5) $10355(12)$ $1885(9)$ $7549(6)$ $114(7)$ C(6) $8874(13)$ $3994(10)$ $7532(7)$ $55(6)$ O(6) $9134(10)$ $4346(7)$ $8039(5)$ $78(5)$ C(7) $5490(14)$ $4006(9)$ $5555(6)$ $433(6)$ O(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ C(8) $7209(13)$ $3987(9)$ $4975(7)$ $53(6)$ O(8) $7175(11)$ $4143(8)$ $4436(5)$ $93(6)$ C(9) $7732(13)$ $4823(11)$ $6135(7)$ $53(7)$ O(9) $8027(10)$ $556(67)$ $6301(5)$ $74(5)$ C(10) $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ O(10) $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ C(11) $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ O(11) $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ O(11) $10624(16)$ $1070(11)$ $7337(8)$ $60(7)$ C(2) $6194(15)$ $4470(10)$ $7828(7)$ $54(7)$ C(2) $6194(15)$ $4470(10)$ $7828(7)$ $48(7)$ C(2) $6194(15)$ $672(9)$ 617	O(2)	4091(9)	2429(7)	6332(5)	67(5)	
O(3) $5264(10)$ $2122(7)$ $4847(5)$ $79(5)$ $C(4)$ $10246(15)$ $4020(11)$ $6712(7)$ $64(7)$ $O(4)$ $11101(10)$ $4407(9)$ $6655(6)$ $111(7)$ $C(5)$ $9756(16)$ $2474(12)$ $7257(7)$ $71(8)$ $O(5)$ $10355(12)$ $1885(9)$ $7549(6)$ $114(7)$ $C(6)$ $8874(13)$ $3994(10)$ $7532(7)$ $55(6)$ $O(6)$ $9134(10)$ $4346(7)$ $8039(5)$ $78(5)$ $C(7)$ $5490(14)$ $4006(9)$ $5565(6)$ $43(6)$ $O(7)$ $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ $C(8)$ $7175(11)$ $4143(8)$ $4436(5)$ $93(6)$ $C(9)$ $7732(13)$ $4823(11)$ $6135(7)$ $53(7)$ $O(9)$ $8027(10)$ $5566(7)$ $6301(5)$ $74(5)$ $C(10)$ $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ $O(10)$ $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ $C(11)$ $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ $O(11)$ $1525(11)$ $1393(10)$ $6425(6)$ $132(8)$ $C(21)$ $5011(16)$ $4051(10)$ $7377(7)$ $49(6)$ $C(22)$ $6194(15)$ $4470(10)$ $7382(7)$ $54(7)$ $C(22)$ $6194(15)$ $672(9)$ $6173(7)$ $49(6)$ $C(24)$ $548(14)$ $5068(9)$ $6828(7)$ $40(9)$ $C(25)$ $4549(13)$ $5444(10)$ $6959(7)$ $74(6)$ $C(24)$ <td>C(3)</td> <td>5911(13)</td> <td>2194(9)</td> <td>5374(7)</td> <td>50(6)</td> <td></td>	C(3)	5911(13)	2194(9)	5374(7)	50(6)	
C(4)10246(15)4020(11)6712(7)64(7)O(4)11101(10)4407(9)6665(6)111(7)C(5)9766(16)2474(12)7257(7)71(8)O(5)10355(12)1885(9)7549(6)114(7)C(6)8874(13)3994(10)7532(7)55(6)O(6)9134(10)4346(7)8039(5)78(5)C(7)5490(14)4006(9)5565(6)43(6)O(7)4437(9)4157(7)5337(5)64(5)C(8)7209(13)3987(9)4975(7)53(6)O(8)7175(11)4143(8)4436(5)93(6)C(9)7732(13)4823(11)6135(7)53(7)O(9)8027(10)5566(7)6301(5)74(5)C(10)8501(17)1702(10)4657(7)66(8)O(10)7581(11)1369(8)4377(5)100(6)C(11)10624(16)1070(11)4830(9)85(9)O(11)10967(13)371(8)4685(7)140(9)C(12)1073(15)1698(12)5936(9)77(9)O(12)1152(11)1393(10)6425(6)132(8)C(21)5011(16)4051(10)7337(8)60(7)C(22)6463(13)5085(9)7379(7)49(6)C(23)6463(13)5085(9)7379(7)49(6)C(24)5468(14)5068(9)6505(7)52(6)C(25)4549(13)4444(10)6905(7)47(6)C(24)5468(14)5068(9) <t< td=""><td>O(3)</td><td>5264(10)</td><td>2122(7)</td><td>4847(5)</td><td>79(5)</td><td></td></t<>	O(3)	5264(10)	2122(7)	4847(5)	79(5)	
O(4)11101(10)4407(9)6665(6)111(7) $C(5)$ 976(16)2474(12)7257(7)71(8) $O(5)$ 10355(12)1885(9)7549(6)114(7) $C(6)$ 8874(13)3994(10)7532(7)55(6) $O(6)$ 9134(10)4346(7)8039(5)78(5) $C(7)$ 5490(14)4006(9)5565(6)43(6) $O(7)$ 4437(9)4157(7)5337(5)64(5) $C(8)$ 7175(11)4143(8)4436(5)93(6) $O(9)$ 7732(13)4823(11)6135(7)53(7) $O(9)$ 8027(10)5566(7)6301(5)74(5) $C(10)$ 7581(11)1369(8)4377(5)100(6) $C(11)$ 10624(16)1070(11)4830(9)85(9) $O(11)$ 10973(15)1698(12)536(9)77(9) $O(12)$ 11525(11)1393(10)6425(6)132(8) $C(21)$ 5011(16)4051(10)7537(8)60(7) $C(22)$ 6194(15)4470(10)7828(7)48(7) $C(22)$ 6194(15)470(10)7828(7)48(7) $C(23)$ 6463(13)5085(9)6328(7)48(7) $C(24)$ 5468(14)5068(9)6828(7)48(7) $C(25)$ 4359(14)544(8)6505(7)52(6) $C(24)$ 5468(14)5068(9)6828(7)48(7) $C(25)$ 4359(14)547(8)577(7)70(8) $C(24)$ 5468(14)5068(9)6828(7)48(7) $C(2$	C(4)	10246(15)	4020(11)	6712(7)	64(7)	
C(5)9766(16) $2474(12)$ $7257(7)$ $71(8)$ O(5)10355(12)1885(9) $7549(6)$ 114(7)C(6)8874(13)3994(10) $7532(7)$ $55(6)$ O(6)9134(10)4346(7)8039(5) $78(5)$ C(7)5490(14)4006(9)5565(6)43(6)O(7)4437(9)4157(7)5337(5)64(5)C(8)7209(13)3987(9)4975(7)53(6)C(9)7732(13)4823(11)6135(7)53(7)O(9)8027(10)5566(7)6301(5)74(5)C(10)8501(17)1702(10)4657(7)66(8)O(10)7581(11)1369(8)4377(5)100(6)C(11)10624(16)1070(11)4830(9)85(9)O(11)1997(13)371(8)4685(7)140(9)C(12)10973(15)1698(12)5936(9)77(9)O(12)10973(13)1508(9)7378(8)60(7)C(21)5011(16)4051(10)7537(8)60(7)C(22)6194(15)4470(10)7828(7)54(7)C(23)6463(13)5085(9)6328(7)48(7)C(24)5468(14)5068(9)6828(7)48(7)C(25)4549(13)4444(10)6905(7)58(6)C(26)4251(14)3432(10)7864(7)77(8)C(27)5914(15)672(9)6173(7)49(6)C(24)5468(14)5068(9)61828(7)48(7)C(23)625(16)8	O(4)	11101(10)	4407(9)	6665(6)	111(7)	
(35) $(10355(12)$ $1885(9)$ $7549(6)$ $114(7)$ (26) $8874(13)$ $3994(10)$ $7532(7)$ $55(6)$ (26) $9134(10)$ $4346(7)$ $8039(5)$ $78(5)$ (27) $5490(14)$ $4006(9)$ $5565(6)$ $43(6)$ (27) $5490(14)$ $4006(9)$ $5565(6)$ $43(6)$ (27) $5490(14)$ $4006(9)$ $5565(6)$ $43(6)$ (28) $7209(13)$ $3987(9)$ $4975(7)$ $53(6)$ (28) $7209(13)$ $3987(9)$ $4975(7)$ $53(6)$ (29) $7732(13)$ $4823(11)$ $6135(7)$ $53(7)$ (09) $8027(10)$ $5566(7)$ $6301(5)$ $74(5)$ (210) $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ (211) $1067(13)$ $371(8)$ $4685(7)$ $140(9)$ (212) $10973(15)$ $1698(12)$ $5936(9)$ $77(9)$ (211) $1007(15)$ $477(10)$ $7828(7)$ $54(7)$ (22) $6194(15)$ $4470(10)$ $7828(7)$ $54(7)$ (22) $6194(15)$ $4470(10)$ $7828(7)$ $48(7)$ (22) $6194(15)$ $4432(10)$ $6905(7)$ $49(6)$ (22) $6194(15)$ $81(8)$ $6839(7)$ $49(6)$ (22) $4549(13)$ $4444(10)$ $6905(7)$ $47(6)$ (22) $4549(14)$ $557(8)$ $5976(7)$ $47(6)$ (22) $4597(14)$ $557(8)$ $597(7)$ $49(6)$ (23) $458(14)$	C(5)	9766(16)	2474(12)	7257(7)	71(8)	
C(6) $8874(13)$ $3994(10)$ $7532(7)$ $55(6)$ O(6) $9134(10)$ $4346(7)$ $8039(5)$ $78(5)$ C(7) $5490(14)$ $4006(9)$ $5555(6)$ $43(6)$ O(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ C(8) $7209(13)$ $3987(9)$ $4975(7)$ $53(6)$ O(8) $7175(11)$ $4143(8)$ $4436(5)$ $93(6)$ C(9) $7732(13)$ $4823(11)$ $6135(7)$ $53(7)$ O(9) $8027(10)$ $556(7)$ $6301(5)$ $74(5)$ C(10) $850(17)$ $1702(10)$ $4657(7)$ $66(8)$ O(10) $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ C(11) $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ O(11) $10967(13)$ $371(8)$ $4685(7)$ $14009)$ C(12) $10973(15)$ $1698(12)$ $5936(9)$ $77(9)$ O(12) $11525(11)$ $1393(10)$ $6425(6)$ $132(8)$ C(21) $5011(16)$ $4051(10)$ $7537(8)$ $60(7)$ C(22) $6194(15)$ $4470(10)$ $7828(7)$ $48(7)$ C(23) $6463(13)$ $5085(9)$ $7379(7)$ $49(6)$ C(24) $5468(14)$ $5068(9)$ $6828(7)$ $48(7)$ C(25) $4549(13)$ $4444(10)$ $6905(7)$ $49(6)$ C(26) $4251(14)$ $3432(10)$ $7864(7)$ $87(8)$ C(27) $5914(15)$ $881(8)$ $6505(7)$ $52(6)$ C(30) $7628(16)$ $891(9)$	0(5)	10355(12)	1885(9)	7549(6)	114(7)	
O(6)9134(10)4346(7)8039(5)78(5) $C(7)$ 5490(14)4006(9)5565(6)43(6) $O(7)$ 4437(9)4157(7)5337(5)64(5) $C(8)$ 7209(13)3987(9)4975(7)53(6) $O(8)$ 7175(11)4143(8)4436(5)93(6) $C(9)$ 7732(13)4823(11)6135(7)53(7) $O(9)$ 8027(10)5566(7)6301(5)74(5) $C(10)$ 8501(17)1702(10)4657(7)66(8) $O(10)$ 7581(11)1369(8)4377(5)100(6) $C(11)$ 10624(16)1070(11)4830(9)85(9) $O(11)$ 10973(15)1698(12)5936(9)77(9) $O(12)$ 11525(11)1393(10)6425(6)132(8) $C(21)$ 5011(16)4051(10)7837(8)60(7) $C(22)$ 6194(15)4470(10)7828(7)54(7) $C(23)$ 6463(13)5085(9)7379(7)49(6) $C(24)$ 5468(14)5068(9)6828(7)48(7) $C(25)$ 4549(13)4444(10)6905(7)49(6) $C(24)$ 5468(14)5068(9)6328(7)48(7) $C(25)$ 4549(13)4444(10)6905(7)49(6) $C(24)$ 5468(14)568(9)6329(7)45(6) $C(25)$ 4549(13)4444(10)6905(7)49(6) $C(24)$ 5468(14)6505(7)52(6) $C(25)$ 4549(13)4444(10)6905(7)48(7) $C(25)$ <t< td=""><td>C(6)</td><td>8874(13)</td><td>3994(10)</td><td>7532(7)</td><td>55(6)</td><td></td></t<>	C(6)	8874(13)	3994(10)	7532(7)	55(6)	
C(7) $5490(14)$ $4006(9)$ $5563(6)$ $436)$ O(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ C(8) $7209(13)$ $3987(9)$ $4975(7)$ $53(6)$ O(8) $7175(11)$ $4143(8)$ $4436(5)$ $93(6)$ C(9) $7732(13)$ $4823(11)$ $6135(7)$ $53(7)$ O(9) $8027(10)$ $556(7)$ $6301(5)$ $74(5)$ C(10) $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ O(10) $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ C(11) $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ O(11) $10967(13)$ $371(8)$ $4685(7)$ $140(9)$ C(12) $10973(15)$ $1698(12)$ $5936(9)$ $77(9)$ O(12) $11525(11)$ $1393(10)$ $6425(6)$ $132(8)$ C(21) $5011(16)$ $4051(10)$ $7537(8)$ $60(7)$ C(22) $6194(15)$ $4470(10)$ $7828(7)$ $48(7)$ C(23) $6463(13)$ $5085(9)$ $7379(7)$ $49(6)$ C(24) $5468(14)$ $5068(9)$ $6828(7)$ $48(7)$ C(25) $4549(13)$ $4444(10)$ $6905(7)$ $49(6)$ C(26) $4251(14)$ $3432(10)$ $7864(7)$ $87(8)$ C(27) $5914(15)$ $672(9)$ $6173(7)$ $49(6)$ C(26) $4251(14)$ $484(9)$ $5797(7)$ $70(6)$ C(23) $6997(14)$ $557(8)$ $5976(7)$ $47(6)$ C(33) $11353(17)$ $2767(10)$ <td< td=""><td>0(6)</td><td>9134(10)</td><td>4346(7)</td><td>8039(5)</td><td>78(5)</td><td></td></td<>	0(6)	9134(10)	4346(7)	8039(5)	78(5)	
O(7) $4437(9)$ $4157(7)$ $5337(5)$ $64(5)$ $O(8)$ $7209(13)$ $3987(9)$ $4975(7)$ $53(6)$ $O(8)$ $7175(11)$ $4143(8)$ $4436(5)$ $93(6)$ $O(9)$ $7732(13)$ $4823(11)$ $6135(7)$ $53(7)$ $O(9)$ $8027(10)$ $556(7)$ $6301(5)$ $74(5)$ $O(10)$ $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ $O(10)$ $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ $C(11)$ $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ $O(11)$ $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ $C(11)$ $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ $O(11)$ $10967(13)$ $371(8)$ $4685(7)$ $140(9)$ $O(12)$ $11525(11)$ $1393(10)$ $6425(6)$ $132(8)$ $C(21)$ $5011(16)$ $4051(10)$ $7537(8)$ $60(7)$ $C(22)$ $6194(15)$ $4470(10)$ $7828(7)$ $54(7)$ $C(23)$ $6463(13)$ $5085(9)$ $6328(7)$ $48(7)$ $C(24)$ $5468(14)$ $5068(9)$ $6828(7)$ $48(7)$ $C(25)$ $4549(13)$ $4444(10)$ $6905(7)$ $49(6)$ $C(24)$ $5468(14)$ $5068(9)$ $6828(7)$ $48(7)$ $C(25)$ $4549(13)$ $4444(10)$ $6905(7)$ $52(6)$ $C(24)$ $5976(7)$ $77(6)$ $C(26)$ $425(14)$ $4849(9)$ $5797(7)$ $C(28)$ $6997(14)$ $557(8)$ $5976(7)$ <	$\alpha(7)$	5490(14)	4006(9)	5565(6)	43(6)	
C(8)7209(13)3987(9)4975(7)53(6)O(8)7175(11)4143(8)4436(5)93(6)C(9)7732(13)4823(11)6135(7)53(7)O(9)8027(10)5566(7)6301(5)74(5)C(10)8501(17)1702(10)4657(7)66(8)O(10)7581(11)1369(8)4377(5)100(6)C(11)10624(16)1070(11)4830(9)85(9)O(11)10967(13)371(8)4685(7)140(9)C(12)10973(15)1698(12)5936(9)77(9)O(12)11525(11)1393(10)6425(6)132(8)C(21)5011(16)4051(10)7537(8)60(7)C(22)6194(15)4470(10)7828(7)54(7)C(23)6463(13)5085(9)7379(7)49(6)C(24)5468(14)5068(9)6828(7)48(7)C(25)4549(13)4444(10)6905(7)49(6)C(27)5914(15)672(9)6173(7)49(7)C(28)6997(14)557(8)5976(7)47(6)C(29)8056(14)684(8)6505(7)52(6)C(30)7628(16)891(9)7053(7)58(7)C(31)6294(15)81(8)6839(7)45(6)C(32)4582(14)484(9)5797(7)70(8)C(33)11233(17)2767(10)4410(9)55(7)C(34)10216(20)3182(14)4214(9)96(10)C(35)10101(22)3738(17) <td>O(7)</td> <td>4437(9)</td> <td>4157(7)</td> <td>5337(5)</td> <td>64(5)</td> <td></td>	O(7)	4437(9)	4157(7)	5337(5)	64(5)	
C(3) $T(3)$ $D(3)$ $D(3)$ $D(3)$ $D(3)$ $C(9)$ $7732(13)$ 41338 $4436(5)$ $93(6)$ $C(9)$ $7732(13)$ $4823(11)$ $6135(7)$ $53(7)$ $O(9)$ $8027(10)$ $5566(7)$ $6301(5)$ $74(5)$ $C(10)$ $8501(17)$ $1702(10)$ $4657(7)$ 6668 $O(10)$ $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ $C(11)$ $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ $O(11)$ $10967(13)$ $371(8)$ $4685(7)$ $140(9)$ $C(12)$ $10973(15)$ $1698(12)$ $5936(9)$ $77(9)$ $O(12)$ $11525(11)$ $1393(10)$ $6425(6)$ $132(8)$ $C(21)$ $5011(16)$ $4051(10)$ $7537(8)$ $60(7)$ $C(22)$ $6194(15)$ $4470(10)$ $7828(7)$ $54(7)$ $C(23)$ $6463(13)$ $5068(9)$ $6828(7)$ $48(7)$ $C(24)$ $5468(14)$ $5068(9)$ $6828(7)$ $49(6)$ $C(27)$ $5914(15)$ $672(9)$ $6173(7)$ $49(6)$ $C(27)$ $5914(15)$ $672(9)$ $6173(7)$ $49(7)$ $C(28)$ $6997(14)$ $557(8)$ $5976(7)$ $47(6)$ $C(29)$ $8056(14)$ $684(8)$ $6505(7)$ $52(6)$ $C(30)$ $7628(16)$ $891(9)$ $703(7)$ $58(7)$ $C(31)$ $6294(15)$ $81(8)$ $6839(7)$ $45(6)$ $C(33)$ $11353(17)$ $2767(10)$ $4110(9)$ $55(7)$ $C(34)$ </td <td>C(8)</td> <td>7209(13)</td> <td>3987(9)</td> <td>4975(7)</td> <td>53(6)</td> <td></td>	C(8)	7209(13)	3987(9)	4975(7)	53(6)	
C(9)7732(13)4823(11)6135(7)53(7)O(9) $8027(10)$ $5566(7)$ $6301(5)$ $74(5)$ C(10) $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ O(10) $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ C(11) $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ O(11) $10967(13)$ $371(8)$ $4685(7)$ $140(9)$ C(12) $10973(15)$ $1698(12)$ $5936(9)$ $77(9)$ O(12) $11525(11)$ $1393(10)$ $6425(6)$ $132(8)$ C(21) $5011(16)$ $4051(10)$ $7537(8)$ $60(7)$ C(22) $6194(15)$ $4470(10)$ $7828(7)$ $54(7)$ C(23) $6463(13)$ $5085(9)$ $7379(7)$ $49(6)$ C(24) $5468(14)$ $5068(9)$ $6828(7)$ $48(7)$ C(25) $4549(13)$ $4444(10)$ $6905(7)$ $49(6)$ C(27) $5914(15)$ $672(9)$ $6173(7)$ $49(7)$ C(28) $6997(14)$ $557(8)$ $5976(7)$ $47(6)$ C(29) $8056(14)$ $684(8)$ $6505(7)$ $52(6)$ C(30) $7628(16)$ $891(9)$ $7037(7)$ $58(7)$ C(31) $6294(15)$ $81(8)$ $6839(7)$ $45(6)$ C(33) $11353(17)$ $2767(10)$ $4410(9)$ $55(7)$ C(34) $10216(20)$ $3182(14)$ $4214(9)$ $96(10)$ C(35) $10101(22)$ $3738(17)$ $4764(17)$ $178(21)$ C(36) $11209(32)$ $3591(14)$ <td>O(8)</td> <td>7175(11)</td> <td>4143(8)</td> <td>4436(5)</td> <td>93(6)</td> <td></td>	O(8)	7175(11)	4143(8)	4436(5)	93(6)	
$\begin{array}{ccccc} 0(9) & 8027(10) & 5566(7) & 6301(5) & 74(5) \\ C(10) & 8501(17) & 1702(10) & 4657(7) & 66(8) \\ O(10) & 7581(11) & 1369(8) & 4377(5) & 100(6) \\ C(11) & 10624(16) & 1070(11) & 4830(9) & 85(9) \\ O(11) & 10967(13) & 371(8) & 4685(7) & 140(9) \\ C(12) & 10973(15) & 1698(12) & 5936(9) & 77(9) \\ O(12) & 11525(11) & 1393(10) & 6425(6) & 132(8) \\ C(21) & 5011(16) & 4051(10) & 7537(8) & 60(7) \\ C(22) & 6194(15) & 4470(10) & 7828(7) & 54(7) \\ C(23) & 6463(13) & 5085(9) & 7379(7) & 49(6) \\ C(24) & 5468(14) & 5068(9) & 6828(7) & 48(7) \\ C(25) & 4549(13) & 4444(10) & 6905(7) & 49(6) \\ C(26) & 4251(14) & 3432(10) & 7864(7) & 87(8) \\ C(27) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ C(28) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11993(19) & 2198(16) & 5010(11) & 218(19) \\ \end{array}$	C(9)	7732(13)	4823(11)	6135(7)	53(7)	
C(10) $8501(17)$ $1702(10)$ $4657(7)$ $66(8)$ O(10) $7581(11)$ $1369(8)$ $4377(5)$ $100(6)$ C(11) $10624(16)$ $1070(11)$ $4830(9)$ $85(9)$ O(11) $10967(13)$ $371(8)$ $4685(7)$ $140(9)$ C(12) $10973(15)$ $1698(12)$ $5936(9)$ $77(9)$ O(12) $11525(11)$ $1393(10)$ $6425(6)$ $132(8)$ C(21) $5011(16)$ $4051(10)$ $7828(7)$ $54(7)$ C(22) $6194(15)$ $4470(10)$ $7828(7)$ $54(7)$ C(23) $6463(13)$ $5085(9)$ $6328(7)$ $48(7)$ C(24) $5468(14)$ $5068(9)$ $6828(7)$ $48(7)$ C(25) $4549(13)$ $4444(10)$ $6905(7)$ $49(6)$ C(24) $5468(14)$ $5068(9)$ $6173(7)$ $49(7)$ C(25) $4549(13)$ $4444(10)$ $6905(7)$ $49(6)$ C(27) $5914(15)$ $672(9)$ $6173(7)$ $49(7)$ C(28) $6997(14)$ $557(8)$ $5976(7)$ $47(6)$ C(29) $8056(14)$ $684(8)$ $6530(7)$ $52(6)$ C(30) $7628(16)$ $891(9)$ $7053(7)$ $58(7)$ C(31) $6294(15)$ $881(8)$ $6839(7)$ $45(6)$ C(32) $4582(14)$ $484(9)$ $5797(7)$ $70(8)$ C(33) $11353(17)$ $2767(10)$ $4410(9)$ $55(7)$ C(34) $10216(20)$ $3182(14)$ $4214(9)$ $96(10)$ C(35) $10101(22)$ $3738(17$	O(9)	8027(10)	5566(7)	6301(5)	74(5)	
$\begin{array}{ccccc} 0(10) & 7581(11) & 1362(10) & 1367(15) & 100(6) \\ C(11) & 10624(16) & 1070(11) & 4830(9) & 85(9) \\ O(11) & 10967(13) & 371(8) & 4685(7) & 140(9) \\ C(12) & 10973(15) & 1698(12) & 5936(9) & 77(9) \\ O(12) & 11525(11) & 1393(10) & 6425(6) & 132(8) \\ C(21) & 5011(16) & 4051(10) & 7537(8) & 60(7) \\ C(22) & 6194(15) & 4470(10) & 7828(7) & 54(7) \\ C(23) & 6463(13) & 5085(9) & 7379(7) & 49(6) \\ C(24) & 5468(14) & 5068(9) & 6828(7) & 48(7) \\ C(25) & 4549(13) & 4444(10) & 6905(7) & 49(6) \\ C(26) & 4251(14) & 3432(10) & 7864(7) & 87(8) \\ C(27) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ C(28) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 1010(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11933(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11993(19) & 219(13) & 4008(11) & 218(19) \\ \end{array}$	$\alpha(10)$	8501(17)	1702(10)	4657(7)	66(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(10)	7581(11)	1369(8)	4377(5)	100(6)	
$\begin{array}{ccccc} (11) & 10967(13) & 371(8) & 4685(7) & 140(9) \\ C(12) & 10973(15) & 1698(12) & 5936(9) & 77(9) \\ O(12) & 11525(11) & 1393(10) & 6425(6) & 132(8) \\ C(21) & 5011(16) & 4051(10) & 7537(8) & 60(7) \\ C(22) & 6194(15) & 4470(10) & 7828(7) & 54(7) \\ C(23) & 6463(13) & 5085(9) & 7379(7) & 49(6) \\ C(24) & 5468(14) & 5068(9) & 6828(7) & 48(7) \\ C(25) & 4549(13) & 4444(10) & 6905(7) & 49(6) \\ C(26) & 4251(14) & 3432(10) & 7864(7) & 87(8) \\ C(27) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ C(28) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 218(19) \\ \end{array}$	C(11)	10624(16)	1070(11)	4830(9)	85(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(11)	10967(13)	371(8)	4685(7)	140(9)	
$\begin{array}{cccc} (12) & 103(12) & 103(12) & 0342(3) & 103(7) & 103(7) & 103(7) & 0425(6) & 132(8) & 007(7) & $	C(12)	10973(15)	1698(12)	5936(9)	77(9)	
$\begin{array}{ccccccc} (21) & 102(11) & 103(10) & 7537(8) & 60(7) \\ (C(21) & 5011(16) & 4051(10) & 7537(8) & 60(7) \\ (C(22) & 6194(15) & 4470(10) & 7828(7) & 54(7) \\ (C(23) & 6463(13) & 5085(9) & 7379(7) & 49(6) \\ (C(24) & 5468(14) & 5068(9) & 6828(7) & 48(7) \\ (C(25) & 4549(13) & 4444(10) & 6905(7) & 49(6) \\ (C(26) & 4251(14) & 3432(10) & 7864(7) & 87(8) \\ (C(27) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ (C(28) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ (C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ (C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ (C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ (C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ (C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ (C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ (C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ (C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ (C(38) & 11993(19) & 2988(16) & 5010(11) & 218(19) \\ \end{array}$	O(12)	11525(11)	1393(10)	6425(6)	137(8)	
$\begin{array}{ccccccc} C(22) & 6194(15) & 4470(10) & 7828(7) & 54(7) \\ C(23) & 6463(13) & 5085(9) & 7379(7) & 49(6) \\ C(24) & 5468(14) & 5068(9) & 6828(7) & 48(7) \\ C(25) & 4549(13) & 4444(10) & 6905(7) & 49(6) \\ C(26) & 4251(14) & 3432(10) & 7864(7) & 87(8) \\ C(27) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ C(28) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(38) & 11993(19) & 2988(16) & 5010(11) & 218(19) \\ \end{array}$	C(21)	5011(16)	4051(10)	7537(8)	60(7)	
C(22) $6463(13)$ $5085(9)$ $7379(7)$ $49(6)$ $C(24)$ $5468(14)$ $5068(9)$ $6828(7)$ $48(7)$ $C(25)$ $4549(13)$ $4444(10)$ $6905(7)$ $49(6)$ $C(26)$ $4251(14)$ $3432(10)$ $7864(7)$ $87(8)$ $C(27)$ $5914(15)$ $672(9)$ $6173(7)$ $49(7)$ $C(28)$ $6997(14)$ $557(8)$ $5976(7)$ $47(6)$ $C(29)$ $8056(14)$ $684(8)$ $6505(7)$ $52(6)$ $C(30)$ $7628(16)$ $891(9)$ $7053(7)$ $58(7)$ $C(31)$ $6294(15)$ $881(8)$ $6839(7)$ $45(6)$ $C(32)$ $4582(14)$ $484(9)$ $5797(7)$ $70(8)$ $C(33)$ $11353(17)$ $2767(10)$ $4410(9)$ $55(7)$ $C(34)$ $10216(20)$ $3182(14)$ $4214(9)$ $96(10)$ $C(35)$ $10101(22)$ $3738(17)$ $4764(17)$ $178(21)$ $C(36)$ $11209(32)$ $3591(14)$ $5172(14)$ $165(22)$ $C(37)$ $11943(19)$ $298(16)$ $5010(11)$ $218(19)$	C(22)	6194(15)	4051(10)	7828(7)	54(7)	
$\begin{array}{ccccc} C(24) & 5468(14) & 5068(9) & 6828(7) & 48(7) \\ C(25) & 4549(13) & 4444(10) & 6905(7) & 49(6) \\ C(26) & 4251(14) & 3432(10) & 7864(7) & 87(8) \\ C(27) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ C(28) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11993(19) & 2191(13) & 4008(11) & 218(19) \\ \end{array}$	C(23)	6463(13)	5085(9)	7379(7)	49(6)	
$\begin{array}{cccccc} C(25) & 4549(13) & 4444(10) & 6905(7) & 49(6) \\ C(26) & 4251(14) & 3432(10) & 7864(7) & 87(8) \\ C(27) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ C(28) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11993(19) & 2191(13) & 4008(11) & 218(19) \\ \end{array}$	C(24)	5468(14)	5068(9)	6828(7)	48(7)	
$\begin{array}{cccccc} (22) & (15)(15) & (1110) & (500)(7) & (16) \\ C(26) & 4251(14) & 3432(10) & 7864(7) & 87(8) \\ C(27) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ C(28) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11993(19) & 2191(13) & 4008(11) & 218(19) \\ \end{array}$	C(25)	4549(13)	4444(10)	6905(7)	49(6)	
$\begin{array}{ccccccc} (227) & 5914(15) & 672(9) & 6173(7) & 49(7) \\ (228) & 6997(14) & 557(8) & 5976(7) & 47(6) \\ (229) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ (230) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ (231) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ (232) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ (233) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ (234) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ (235) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ (236) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ (237) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ (238) & 11993(19) & 2191(13) & 4008(11) & 218(19) \\ \end{array}$	C(26)	4251(14)	3432(10)	7864(7)	87(8)	
$\begin{array}{ccccc} C(28) & 6997(14) & 577(8) & 5976(7) & 47(6) \\ C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11993(19) & 2191(13) & 4008(11) & 218(19) \\ \end{array}$	C(27)	5914(15)	672(9)	6173(7)	49(7)	
$\begin{array}{cccccc} C(29) & 8056(14) & 684(8) & 6505(7) & 52(6) \\ C(30) & 7628(16) & 891(9) & 7053(7) & 58(7) \\ C(31) & 6294(15) & 881(8) & 6839(7) & 45(6) \\ C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11993(19) & 2191(13) & 4008(11) & 218(19) \\ \end{array}$	C(28)	6997(14)	557(8)	5976(7)	47(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	8056(14)	684(8)	6505(7)	52(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	7628(16)	801(0)	7053(7)	58(7)	
$\begin{array}{cccccc} C(32) & 4582(14) & 484(9) & 5797(7) & 70(8) \\ C(33) & 11353(17) & 2767(10) & 4410(9) & 55(7) \\ C(34) & 10216(20) & 3182(14) & 4214(9) & 96(10) \\ C(35) & 10101(22) & 3738(17) & 4764(17) & 178(21) \\ C(36) & 11209(32) & 3591(14) & 5172(14) & 165(22) \\ C(37) & 11943(19) & 2988(16) & 5010(11) & 128(12) \\ C(38) & 11993(19) & 2191(13) & 4008(11) & 218(19) \\ \end{array}$	C(31)	6294(15)	881(8)	6839(7)	45(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	4582(14)	484(0)	5707(7)	70(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	11353(17)	2767(10)	4410(9)	55(7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	10216(20)	3187(14)	4214(0)	96(10)	
C(36) $11209(32)$ $3591(14)$ $4704(17)$ $176(21)$ $C(36)$ $11209(32)$ $3591(14)$ $5172(14)$ $165(22)$ $C(37)$ $11943(19)$ $2988(16)$ $5010(11)$ $128(12)$ $C(38)$ $11993(19)$ $2191(13)$ $4008(11)$ $218(19)$	C(35)	10101(22)	3738(17)	476A(17)	178(21)	
C(37) $1120/(32)$ $337/(14)$ $100(22)$ $C(37)$ $11943(19)$ $2988(16)$ $5010(11)$ $128(12)$ $C(38)$ $11993(19)$ $2191(13)$ $4008(11)$ $218(19)$	C(36)	11200(22)	350(17)	5172(1A)	165(22)	
C(38) 11993(19) 2191(13) 4008(11) 218(19)	C(37)	11043(10)	2088(16)	5010(11)	178(17)	
	C(38)	11993(19)	2191(13)	4008(11)	218(19)	

Lageparameter (×10⁴) und thermische Parameter (×10³) von μ_4 -AsCp'₃Fe₂Mo₃(CO)₁₂ (5b)

		_		- 5 2 5 12	
Mo(1)-Mo(2)	290.0(2)	Mo(1)-Fe(1)	289.1(3)	Mo(1)-Fe(2)	280.4(3)
Mo(2)-As(1)	244.8(2)	Mo(2)-Fe(1)	292.9(2)	As(1)-Fe(1)	232.4(2)
As(1)-Fe(2)	234.9(2)	Mo(3)-As(1)	263.1(2)	Fe(1)-Fe(2)	263.5(3)
Mo(2)-Mo(1)-Fe(1) 60.8(1)	Mo(2)-Fe(2)-As(1)	56.0(1)	Mo(2)-Mo(1)-Fe(2)	58.7(1)
Mo(2)-As(1)-Mo(3) 142.5(1)	Mo(1) - Fe(2) - Fe(1)	64.1(1)	Fe(1)-Mo(1)-Fe(2)	55.1(1)
Mo(2)-As(1)-Fe(1)	75.7(1)	Mo(2) - Fe(2) - Fe(1)	65.2(1)	Mo(3)-As(1)-Fe(1)	134.1(1)
As(1)-Fe(2)-Fe(1)	55.2(1)	Mo(2)-As(1)-Fe(2)	71.3(1)	Mo(3)-As(1)-Fe(2)	134.2(1)
Fe(1)-As(1)-Fe(2)	68.6(1)	Mo(1)-Fe(1)-Mo(2)	59.8(1)	Mo(1)-Fe(1)-As(1)	103.6(1)
Mo(2)-Fe(1)-As(1)	54.1(1)	Mo(1)-Mo(2)-As(1)	100.2(1)	Mo(1)-Fe(1)-Fe(2)	60.8(1)
Mo(1)-Mo(2)-Fe(1)) 59.5(1)	Mo(2) - Fe(1) - Fe(2)	60.1(1)	As(1)-Mo(2)-Fe(1)	50.2(1)
As(1)-Fe(1)-Fe(2)	56.1(1)	Mo(1)-Mo(2)-Fe(2)	58.9(1)	As(1)-Mo(2)-Fe(2)	52.7(1)
Fe(1)-Mo(2)-Fe(2)	54.7(1)	Mo(1)-Fe(2)-Mo(2)	62.4(1)	Mo(1)-Fe(2)-As(1)	105.6(1)

Ausgewählte Bindungslängen (pm) und Bindungswinkel (°) von μ_4 -AsCp'₃Fe₂Mo₃(CO)₁₂ (5b)

8 kristallisiert monoklin in der Raumgruppe $P2_1/c$ (Nr. 14). Die Molekülstruktur von 8 (Fig. 3) zeigt, daß das Fe₃As₂-Grundgerüst eine trigonalen Bipyramide bildet, bei der jedoch eine Fe-Fe-Bindung aufgebrochen ist, so daß die Struktur einer quadratischen Pyramide resultiert. Im Gegensatz zu 8 bildet das Fe₃As₂-Gerüst der Verbindung (μ_3 -As)₂Fe₃(CO)₉ (10) eine trigonale Bipyramide [8]. Werden nun dem Fe₃As₂-Cluster 10 durch Koordination von zwei 17-Elektronenfragmenten (CpMo(CO)₃ in 8) zwei zusätzliche Gerüstelektronen geliefert, so erfolgt, wie auch von den Wadeschen Regeln gefordert [6], der Übergang vom closo-Typ 10 (2n + 2 Gerüstelektronen) zum *nido*-Cluster 8 (2n + 4 Gerüstelektronen) unter Spaltung einer Metall-Metall-Bindung. Hingegen bewirkt die Anlagerung zweier 16-Elektronen-Fragmente (z.B. Cr(CO)₅ [4]) an die beiden Arsenatome in 10 kein Änderung des Grundgerüsts des Clusters; die *closo*-Struktur bleibt erhalten [4]. Der durch Zufuhr von zwei Elektronen bewirkte Übergang

Fig. 2. Moleküldarstellung von 5b. Die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

Schema 2.

vom closo- zum nido-Cluster ist auch für andere Verbindungen bekannt. So besitzt der Komplex $(\mu_3-Bi)_2Fe_3(CO)_9$ [9] die gleiche Struktur wie 10 (closo). Durch die Anlagerung des 18-Elektronen-Fragmentes $Fe(CO)_4^{2-}$ an ein Bismutatom werden zusätzlich zwei Gerüstelektronen geliefert und unter Spaltung einer Fe-Fe-Bindung der nido-Cluster gebildet [10].

Die Mo-As-Abstände (267.6(1) pm) und die Fe-As-Abstände (234.8(1) bis 237.8(1) pm) bei 8 liegen im Einfachbindungsbereich [2a,8]. Auch die Bindungslängen Fe(1)-Fe(2) und Fe(1)-Fe(3) liegen im Einfachbindungsbereich (275.0(2) und 272.6(2) pm) [4,8], während der Abstand Fe(2)-Fe(3) (366.4(2) pm) zu groß für eine Fe-Fe-Bindung ist [4]. Jedes Fe-Atom besitzt drei terminale CO-Liganden (Fe-C-Abstände 174.0(8) bis 178.4(9) pm) [4], jedes Mo-Atom einen Cp-Liganden

Fig. 3. Moleküldarstellung von 8. Die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

Tabelle	3
---------	---

Lageparameter (×10⁴) und thermische Parameter (×10³) von (μ_4 -As)₂Cp₂Fe₃Mo₂(CO)₁₅ (8)

Atom	<i>x</i>	y	Z	U _{eq}	
As(1)	3676(1)	4202(1)	1981(1)	35(1)	
As(2)	3600(1)	5951(1)	3128(1)	35(1)	
Mo(1)	3692(1)	2417(1)	1024(1)	43(1)	
Mo(2)	3570(1)	7328(1)	4249(1)	42(1)	
Fe(1)	2961(1)	6198(1)	1974(1)	41(1)	
Fe(2)	2780(1)	4125(1)	2784(1)	39(1)	
Fe(3)	4633(1)	5823(1)	2436(1)	42(1)	
C(1)	4879(7)	1669(11)	663(6)	93(5)	
C(2)	5000(6)	2973(11)	806(5)	79(5)	
C(3)	4404(6)	3685(9)	355(5)	67(4)	
C(4)	3927(5)	2779(11)	- 71(4)	72(4)	
C(5)	4201(7)	1563(11)	108(6)	84(5)	
C(6)	3872(7)	9487(9)	4410(8)	103(6)	
C(7)	4222(9)	8847(13)	5002(6)	114(7)	
C(8)	4841(8)	8066(11)	4854(6)	98(5)	
C(9)	4882(6)	8180(9)	4185(6)	75(4)	
C(10)	4280(7)	9082(9)	3916(5)	73(4)	
C(11)	4009(7)	1579(8)	1919(5)	84(5)	
O(11)	4235(6)	1082(6)	2429(3)	132(4)	
C(12)	2933(6)	935(9)	907(4)	74(4)	
O(12)	2485(5)	60(7)	824(4)	122(4)	
α_{13}	2570(5)	3243(8)	817(4)	50(3)	
O(13)	1926(3)	3719(6)	639(3)	76(3)	
C(14)	2808(7)	7122(10)	4905(6)	86(5)	
O(14)	2372(5)	7005(9)	5281(5)	143(5)	
C(15)	3758(6)	5527(8)	4558(4)	65(4)	
O(15)	3877(5)	4521(6)	4781(3)	110(4)	
C(16)	2448(6)	7554(9)	3678(5)	71(4)	
O(16)	1794(4)	7742(8)	3367(4)	114(4)	
C(17)	3165(5)	6396(8)	1143(4)	60(3)	
0(17)	3292(4)	6571(7)	603(3)	98(3)	
C(18)	2854(6)	7845(8)	2181(4)	65(4)	
O(18)	2789(5)	8923(6)	2294(3)	109(4)	
C(19)	1883(5)	5841(8)	1173(4)	53(3)	
O(19)	1170(3)	5679(6)	1595(3)	80(3)	
C(20)	2101(5)	2952(8)	2329(4)	59(3)	
O(20)	1685(4)	2144(6)	2060(3)	93(3)	
C(21)	2034(5)	4529(8)	3299(4)	61(4)	
O(21)	1568(4)	4737(7)	3655(4)	92(3)	
C(22)	3451(5)	3116(7)	3326(4)	51(3)	
O(22)	3892(4)	2421(6)	3677(3)	82(3)	
C(23)	5169(6)	5795(10)	1750(5)	78(4)	
O(23)	5571(5)	5787(8)	1329(4)	124(4)	
C(24)	5353(5)	5006(9)	3058(5)	67(4)	
0(24)	5821(4)	4455(8)	3457(4)	124(4)	
C(25)	4920(5)	7475(9)	2548(4)	63(4)	
O(25)	5108(5)	8536(6)	2586(4)	99(3)	
0(25)	5100(5)	000000			

sowie drei terminale CO-Gruppen. Die Abstände Mo-C(CO) (196.1(10) bis 198.7(8) pm) und Mo-C(Cp) (im Mittel 232.5(10) bzw. 231.7(10) pm) liegen im Erwartungsbereich (230 bis 235 pm) [2a].

Ausgewanite Bindung	gslangen (pi	n) und Bindungswinke	(1) von $(\mu$	$_4$ -As) ₂ Cp ₂ re ₃ Mo ₂ (CO) ₁₅ (a)
As(1)-Mo(1)	267.6(1)	As(1)-Fe(1)	237.8(1)	As(1)-Fe(2)	236.3(2)
As(1)-Fe(3)	235.9(1)	As(2)-Mo(2)	267.6(1)	As(2)-Fe(1)	236.8(1)
As(2)-Fe(2)	234.8(1)	Fe(1)-Fe(2)	275.0(2)	As(2)-Fe(3)	237.1(2)
Fe(1)-Fe(3)	272.6(2)				
Mo(1)-As(1)-Fe(1)	132.3(1)	As(1)-Fe(3)-Fe(1)	55.2(1)	Mo(1)-As(1)-Fe(2)	123.8(1)
As(2)-Fe(3)-Fe(1)	54.8(1)	Fe(1)-As(1)-Fe(2)	70.9(1)	Mo(1)-As(1)-Fe(3)	132.9(1)
Fe(1)-As(1)-Fe(3)	70.3(1)	Fe(2)-As(1)-Fe(3)	101.8(1)	Mo(2)-As(2)-Fe(1)	133.7(1)
Mo(2)-As(2)-Fe(2)	125.6(1)	Fe(1)-As(2)-Fe(2)	71.3(1)	Mo(2)-As(2)-Fe(3)	130.4(1)
Fe(1)-As(2)-Fe(3)	70.2(1)	Fe(2)-As(2)-Fe(3)	101.9(1)	As(1)-Fe(2)-As(2)	77.7(1)
As(1)-Fe(2)-Fe(1)	54.8(1)	As(2)-Fe(2)-Fe(1)	54.7(1)	As(1)-Fe(1)-As(2)	77.0(1)
As(1)-Fe(1)-Fe(2)	54.3(1)	As(2)-Fe(1)-Fe(2)	54.0(1)	As(1)-Fe(1)-Fe(3)	54.6(1)
As(2)-Fe(1)-Fe(3)	54.9(1)	Fe(2)-Fe(1)-Fe(3)	84.0(1)	C(21)-Fe(2)-C(22)	101.2(4)
As(1)-Fe(3)-As(2)	77.3(1)				

Kophotolyse von $As_2Cp'_2Mo_2(CO)_4$ (6b) mit $Fe_2(CO)_9$ (7)

Bei der Kophotolyse von 6b mit 7 entsteht der Cluster As₂Cp'₂Mo₂Fe₄- $(CO)_{17}$ (9) (Schema 3). 9 wurde spektroskopisch (IR, NMR, MS) und röntgenstrukturanalytisch charakterisiert. In Tab. 5 sind die Ortsparameter und thermischen Parameter zusammengefaßt, in Tab. 6 sind ausgewählte Bindungsabstände und -winkel gegeben. Die Röntgenstrukturanalyse (Fig. 4) zeigt, daß das Fe₃As₂-Grundgerüst von 9 eine trigonale Bipyramide bildet. An As(1) ist zusätzlich ein Cp'Mo(CO)₃-Fragment, an As(2) ein Cp'Mo(CO)₂- und ein Fe(CO)₄-Fragment koordiniert Die beiden letztgenannten Fragmente sind untereinander durch eine Einfachbindung verknüpft. Zusätzlich ist das Fe(CO)₄-Fragment an eine Fe(CO)₂-Gruppe des zentralen Fe₃(CO)₈-Rings gebunden.

9 erfüllt die 18-Valenzelektronenregel. Alle bindenden Metall-Metall-Abstände liegen im Einfachbindungsbereich. Die Fe-Fe-Abstände (266.7(3) bis 278.9(4) pm) sind denen in CpMnFe₅(CO)₁₈P₂ (11) vergleichbar [4]. Die Fe-As-Abstände (221.5(3) bis 254.1(3) pm [2a,3,11]) und Mo-As-Abstände (241.1(3) und 259.1(3) pm [2a]) liegen im gleichen Bereich wie bei ähnlich gebauten Verbindungen.

Schema 3.

Atom	r	ν	7	<u> </u>
Mo(1)	5462(1)	<u> </u>	4 	20(1)
C(21)	5405(1)	1410(1)	8802(1) 9714(7)	39(1)
C(21)	6605(9)	140/(11)	9/14(7)	54(6) 59(7)
(22)	6401(8)	339(11) 125(11)	9332(7)	58(7) (5(7)
(24)	6640(7)	123(11)	00 44 (0) 9520(7)	03(7)
C(25)	6884(7)	1069(10)	0095(7)	03(7) 54(6)
$M_{0}(2)$	4130(1)	7572(1)	9003(7)	34(0) 20(1)
(126)	3556(0)	9544(15)	5240(7)	39(1) 70(7)
C(27)	3018(0)	8681(14)	5621(7)	70(7)
C(28)	2721(8)	7502(17)	5699(7)	70(0)
C(29)	3034(0)	6761(14)	5360(7)	(9(8) 77(9)
C(20)	3573(0)	7247(15)	5006(6)	77(0)
C(31)	7162(9)	2052(11)	10421(6)	/0(0)
(32)	7102(0)	2032(11)	5000(7)	83(8) 125(11)
$\Delta s(2)$	<i>4586(1)</i>	5852(1)	JUUU(7) 7117(1)	123(11)
$A_{\alpha}(1)$	4J00(1) 5084(1)	3332(1)	/11/(1)	32(1)
Fe(1)	3844(1)	3340(1) 4161(2)	0124(1)	35(1)
$F_{e}(2)$	A070(1)	4101(2) 5200(1)	7230(1) 9265(1)	36(1)
Fe(3)	5540(1)	JJU9(1) A337(1)	0303(1) 7412(1)	30(1)
Fe(4)	5620(1)	4337(1) 6074(2)	7412(1) 6408(1)	30(1)
(1)	4506(7)	1010(10)	7979(6)	41(1)
O(1)	4008(5)	1019(10) 909(9)	7020(0)	40(0)
(1)	4030(3)	251(11)	/203(4)	75(5) 55(6)
O(2)	4730(8)	-410(8)	9031(6)	55(0) 80(5)
C(3)	4073(8)	- 410(8)	9170(3)	50(J)
O(3)	4975(0)	2315(11)	9362(0)	39(7) 00(6)
C(4)	3810(8)	2013(9)	7157(7)	99(D) 52(6)
O(4)	3506(6)	8706(8)	7600(5)	93(6) 92(6)
C(5)	5017(0)	8730(11)	6750(7)	60(7)
0(5)	5507(6)	9477(8)	6988(5)	85(6)
C(6)	2942(8)	5118(11)	6924(7)	56(7)
0(6)	2350(5)	5669(9)	6745(5)	90(5)
$\alpha(7)$	3300(7)	3217(10)	7628(7)	49(6)
0(7)	2938(5)	2618(8)	7853(5)	81(5)
C(8)	3670(7)	3323(11)	6474(6)	52(6)
O(8)	3559(6)	2772(9)	5981(4)	86(5)
C(9)	5237(8)	6745(11)	8499(6)	52(6)
O(9)	5473(6)	7679(8)	8644(5)	78(5)
C(10)	4078(9)	5448(11)	8587(6)	66(7)
O (10)	3481(7)	5553(10)	8726(6)	125(7)
C(11)	5782(9)	4914(10)	9201(7)	60(7)
O(11)	6312(7)	4731(9)	9744(5)	124(6)
C(12)	6606(8)	4550(10)	7987(6)	46(6)
O(12)	7318(5)	4612(7)	8405(4)	66(4)
C(13)	5682(7)	3212(11)	6891(6)	51(6)
O(13)	5779(6)	2427(8)	6577(5)	85(6)
C(14)	5627(7)	7177(10)	5891(6)	47(6)
O(14)	5698(5)	7840(7)	5499(4)	74(5)
C(15)	6502(8)	5175(11)	6501(6)	55(6)
O(15)	7048(6)	4667(8)	6484(5)	84(6)
C(16)	6299(8)	6866(12)	7313(7)	55(7)
O(16)	6731(5)	7355(8)	7797(4)	72(5)

5191(10)

4625(8)

5810(6)

5371(4)

45(6)

76(5)

Lageparameter (×10⁴) und thermische Parameter (×10³) von As₂Cp'₂Mo₂Fe₄(CO)₁₇ (9)

C(17)

O(17)

4842(8)

4351(6)

Tabelle 6

Ausgewählte Bindungslängen (pm) und Bindungswinkel (°) von $As_2Cp'_2Mo_2Fe_4(CO)_{17}$ (9)

Fe(3)-Fe(4)	278.9(4)	Mo(2)-As(2)	246.1(3)	Mo(2)-Fe(4)	298.5(4)
Mo(1)-As(1)	259.1(3)	As(2)-Fe(1)	242.0(3)	As(2)-Fe(2)	243.6(3)
As(2)-Fe(3)	231.3(3)	As(2)-Fe(4)	254.1(3)	As(1)-Fe(1)	234.5(3)
As(1)-Fe(2)	236.9(3)	As(1)-Fe(3)	221.5(3)	Fe(1)-Fe(2)	266.7(3)
Fe(1)-Fe(3)	277.5(4)				
Mo(2)-Fe(4)-As(2)	52.1(1)	As(2)-Mo(2)-Fe(4)	54.6(1)	As(2)-Fe(2)-As(1)	92.8(1)
Mo(2)-Fe(4)-Fe(3)	103.3(1)	As(2)-Fe(2)-Fe(1)	56.4(1)	As(2)-Fe(4)-Fe(3)	51.2(1)
As(1)-Fe(2)-Fe(1)	55.1(1)	As(2)-Fe(2)-Fe(3)	52.9(1)	As(1)-Fe(2)-Fe(3)	50.9(1)
Fe(1)-Fe(2)-Fe(3)	61.9(1)	Mo(2)-As(2)-Fe(1)	134.0(1)	Mo(2)-As(2)-Fe(2)	138.6(1)
Fe(1)-As(2)-Fe(2)	66.6(1)	Mo(2)-As(2)-Fe(3)	143.1(1)	Fe(1)-As(2)-Fe(3)	71.7(1)
Fe(2)-As(2)-Fe(3)	70.0(1)	Mo(2)-As(2)-Fe(4)	73.3(1)	Fe(1)-As(2)-Fe(4)	129.3(1)
Fe(2)-As(2)-Fe(4)	125.9(1)	Fe(3)-As(2)-Fe(4)	70.0(1)	Mo(1)-As(1)-Fe(1)	135.5(1)
Mo(1)-As(1)-Fe(2)	139.3(1)	Fe(1)-As(1)-Fe(2)	68.9(1)	Mo(1)-As(1)-Fe(3)	136.4(1)
Fe(1)-As(1)-Fe(3)	74.9(1)	Fe(2)-As(1)-Fe(3)	72.9(1)	As(2)-Fe(3)-As(1)	100.4(1)
As(2)-Fe(1)-As(1)	93.8(1)	As(2)-Fe(3)-Fe(1)	55.9(1)	As(2)-Fe(1)-Fe(2)	57.0(1)
As(1)-Fe(3)-Fe(1)	54.7(1)	As(1)-Fe(1)-Fe(2)	56.0(1)	As(2)-Fe(3)-Fe(2)	57.1(1)
As(2)-Fe(1)-Fe(3)	52.3(1)	As(1)-Fe(3)-Fe(2)	56.1(1)	As(1)-Fe(1)-Fe(3)	50.4(1)
Fe(1)-Fe(3)-Fe(2)	58.0(1)	Fe(2)-Fe(1)-Fe(3)	60.1(1)	As(2)-Fe(3)-Fe(4)	58.9(1)
As(1)-Fe(3)-Fe(4)	159.2(1)	Fe(1)-Fe(3)-Fe(4)	107.4(1)	Fe(2)-Fe(3)-Fe(4)	106.9(1)

Zwei Beispiele für mit 9 vergleichbare Verbindungen, die einen μ_5 -P- bzw. Quasi- μ_5 -P-Liganden aufweisen, sind literaturbekannt [4,12]. Der von Huttner *et al.* synthetisierte Cluster CpMnFe₅(CO)₁₈P₂ (11) [4] weist ein vergleichbares Grundgerüst und die gleiche Gesamtelektronenzahl wie 9 auf, auch wenn einige Positionen von unterschiedlichen Atomen besetzt werden. 9 und 11 enthalten je eine Arsen-Eisen- bzw. Phosphor-Eisen-Bindung mehr, als zur Beschreibung der Bindungsverhältnisse in diesen Clustern nötig wäre. Der entsprechende Phosphor-Eisen-Abstand ist zwar um etwa 25 pm länger als die anderen Phosphor-Eisen-Abstände in 11, er liegt aber sicher im bindenden Bereich [4]. Bei den

Fig. 4. Moleküldarstellung von 9. Die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

beobachteten Komplexen mit μ_5 -P-Liganden liegen vier Phosphor-Metall-Abstände im Bereich von Einfachbindungen. Der fünfte Metall-Phosphor-Abstand ist hingegen geringfügig größer als die Summe der Kovalenzradien beider Atome [3,12]. Auch in 9 weist der μ_5 -As-Ligand unterschiedliche Fe-As-Bindungslängen auf. So sind die Abstände vom As(2) zu den Fe-Atomen des zentralen Fe₃(CO)₁₁-Rings mit 231.3(3) bis 243.6(3) pm um im Mittel 15 pm kürzer als der entsprechende As-Fe(CO)₄-Abstand (As(2)-Fe(4) 254.1(3) pm). Für den Elektronenhaushalt ist die As(2)-Fe(4) Bindung im Rahmen der üblichen Zählregeln nicht erforderlich. Im Rahmen dieser einfachen Modelle stört sie jedoch nicht, da das Arsenatom, wie auch das Phosphoratom in den zuvorgenannten Verbindungen, auf jeden Fall mit allen fünf Elektronen am Elektronenhaushalt des Clusters beteiligt ist [4].

Experimenteller Teil

Alle Arbeiten wurden unter Ausschluß von Luft und Feuchtigkeit und unter Verwendung argongesättigter, wasserfreier Lösungsmittel durchgeführt (Schlenkrohrtechnik [13,14]). Die Photolysereaktionen wurden in einer "falling-film" Tauchlampenapparatur mit Innenkühlung und Außenkühlmantel durchgeführt [15]. Die Trennung der Reaktionsprodukte erfolgte säulenchromatographisch (Mitteldrucksäule der Firma Büchi (460/32 mm) mit Kühlmantel, stationäre Phase: Kieselgel 60 (0.04–0.063 mm) der Firma Merck). Die Schmelz- bzw. Zersetzungspunkte wurden auf einem Schmelztisch mit Monoskop VS der Firma Hans Bock ermittelt und sind korrigiert. Die IR-Spektren wurden mit dem Gerät Perkin-Elmer 983 registriert. Die Proben für ¹H-NMR-Spektren wurden unter Argon abgefüllt; das Lösungsmittel diente als Bezug (Bruker WH 300, 300 MHz). Die Aufnahme der Massenspektren erfolgte an dem Gerät Finnigan MAT 8200. Die Elementaranalysen wurden im Mikroanalytischen Labor des Chemischen Instituts Heidelberg ausgeführt.

1. Kophotolyse von $(\mu_3 - A_s)Cp_3 Mo_3(CO)_6$ (1a) mit $Fe_3(CO)_{12}$ (2); Darstellung von $(\mu_4 - A_s)Cp_3Fe_3 Mo_3(CO)_{17}$ (3a), $(\mu_4 - A_s)Cp_3Fe Mo_3(CO)_{10}$ (4a) und $(\mu_4 - A_s)Cp_3Fe_2 - Mo_3(CO)_{12}$ (5a)

0.5 g (0.69 mmol) (μ_3 -As)Cp₃Mo₃(CO)₆ (1a) werden mit 1 g (1.98 mmol) Fe₃(CO)₁₂ (2) in 250 ml THF kophotolysiert. Nach 4 h bei -10°C wird die Photolyse abgebrochen und das Lösungsmittel im Ölpumpenvakuum abgezogen. Der Rückstand wird im 10 ml CH₂Cl₂ aufgenommen und über eine gekühlte MPLC-Säule (-20°C) chromatographiert. Hexan/CH₂Cl₂ (3/1) eluiert dunkelgrünes Fe₃(CO)₁₂ (2). Danach erhält man mit Hexan/CH₂Cl₂ (1/1) braunes 3a. Hexan/CH₂Cl₂ (1/2) eluiert grünes 4a. Mit CH₂Cl₂/THF (1/1) erhält man rotbraunes 5a. 3a, 4a und 5a können durch Umkristallisieren aus Hexan/CH₂Cl₂ (2/1) in Form von braunen Kristallen erhalten werden. Da von 5a keine für eine Röntgenstrukturanalyse geeigneten Einkristalle erhalten werden konnten, wurde die Cp'-substituierte Verbindung (μ_4 -As)Cp'₃Fe₂Mo₃(CO)₁₂ (5b) hergestellt und röntgenstrukturanalytisch untersucht (siehe 2.).

 $(\mu_4 - A_s)Cp_3 Fe_3 Mo_3(CO)_{17}$ (3a). Ausbeute: 45 mg (5% bez. 1a); Fp. > 320°C; EI-MS: 726 (C₂₁H₁₅AsMo₃O₆); IR (KBr, cm⁻¹): 2032st, 2001m, 1985st, 1934vst, 1902st, 1885st, 1866st, 1817m (CO); 834 (CH); ¹H-NMR (CDCl₃, 298 K, δ /ppm):

5.19 (s). Gef.: C, 31.24; H, 0.92; $C_{32}H_{15}AsFe_{3}Mo_{3}O_{17}$ (1201.4) ber.: C, 31.98; H, 1.25%.

 $(\mu_{4}A_{5})Cp_{3}FeMo_{3}(CO)_{10}$ (4a). Ausbeute 60 mg (10% bez. 1a); Fp. 205°C (Zers.); EI-MS: 726 (C₂₁H₁₅AsMo₃O₆); IR (KBr, cm⁻¹): 2029st, 1992vst, 1951st, 1916st, 1898st, 1834st (CO); 824 (CH); ¹H-NMR (CDCl₃, 298 K, δ /ppm): 5.30 (s). Gef.: C, 34.10; H, 2.25; C₂₅H₁₅AsFeMo₃O₁₀ (893.8); ber.: C, 33.58; H, 1.67%.

 $(\mu_4 - As)Cp_3 Fe_2 Mo_3(CO)_{12}$ (5a). Ausbeute: 20 mg (3% bez 1a); Fp. 140°C; IR (KBr, cm⁻¹): 2039st, 2001st, 1959vst, 1747m (CO); 834 (CH); ¹H-NMR (CDCl₃, 298 K, δ /ppm): 5.79, 5.30, 5.00 (je s).

2. Kophotolyse von $(\mu_3$ -As)Cp'_3Mo_3(CO)_6 (1b) mit Fe₃(CO)_{12} (2); Darstellung von $(\mu_4$ -As)Cp'_3Fe_3Mo_3(CO)_{17} (3b), $(\mu_4$ -As)Cp'_3FeMo_3(CO)_{10} (4b) und $(\mu_4$ -As)Cp'_3-Fe_2Mo_3(CO)_{12} (5b)

0.5 g (0.65 mmol) μ_3 -AsCp'₃Mo₃(CO)₆ (1b) werden mit 1 g (1.98 mmol) Fe₃(CO)₁₂ (2) kophotolysiert. Die Durchführung und Aufarbeitung erfolgt analog der Vorschrift zur Umsetzung von 1a mit 2 (siehe 1.). Die Verbindungen 3b, 4b wurden durch Spektrenvergleich zu 3a, 4a identifiziert.

 $(\mu_4 - As)Cp'_3Fe_2Mo_3(CO)_{12}$ (5b). Ausbeute: 60 mg (8% bez. 1b); Fp. 147°C; FD-MS: 1048 (M^+); IR (KBr, cm⁻¹): 2029st, 2001st, 1972vst, 1951vst, 1920vst, 1908vst, 1871st, 1736st (CO); 830w, 844w (CH); ¹H-NMR (CDCl₃, 298 K, δ /ppm): 5.80, 5.29, 5.07 (je s), 2.36, 2.02 (je s). Gef.: C, 33.87; H, 1.61; C₃₀H₂₁AsFe₂Mo₃O₁₂ (1047.7) ber.: C, 34.29; H, 2.00%.

3. Thermische Umsetzung von $As_2Cp_2Mo_2(CO)_4$ (6a) mit $Fe_2(CO)_9$ (7); Darstellung von $(\mu_4 - As)_2Cp_2Fe_3Mo_2(CO)_{15}$ (8)

Eine Lösung von 0.5 g (0.85 mmol) $As_2Cp_2Mo_2(CO)_4$ (**6a**) wird mit 1 g (2.75 mmol) $Fe_2(CO)_9$ (7) in 100 ml Toluol unter Rückfluß gekocht. Nach 2 Tagen wird die Reaktion abgebrochen und das Lösungsmittel abgezogen. Der Rückstand wird in 10 ml CH₂Cl₂ aufgenommen und über eine MPLC-Säule getrennt. Mit Hexan/ CH₂Cl₂ (2/1) erhält man rotes $Cp_2Mo_2(CO)_6$, dann oranges **6a** und 7. Hexan/ CH₂Cl₂ (1/1) eluiert rotbraunes (μ_4 -As)₂Cp₂Fe₃Mo₂(CO)₁₅ (**8**). Dunkelbraune Blättchen können durch Umkristallisieren von **8** aus Hexan/ CH₂Cl₂ (2/1) erhalten werden. Ausbeute: 130 mg (14% bez. **6a**). Fp.: 107°C (Zers.); FD-MS: 1059 (M^+); IR (KBr, cm⁻¹): 2051st, 2015vst, 2003vst, 1987vst, 1951vst, 1923vst (CO); 826m (CH); ¹H-NMR (CDCl₃, 298 K, δ -Wert/ppm): 5.73 (s). Gef.: C, 28.43; H 1.10; C₂₅H₁₀As₂Fe₃Mo₂O₁₅ (1059.4) ber.: C, 28.34; H, 0.94%.

4. Thermische Umsetzung von $As_2Cp_2Mo_2(CO)_4$ (6a) mit $Fe_3(CO)_{12}$ (2); Darstellung von $(\mu_4 As_2Cp_2Fe_3Mo_2(CO)_{15}$ (8)

0.5 g (0.85 mmol) $As_2Cp_2Mo_2(CO)_4$ (6a) und 1 g (1.98 mmol) $Fe_3(CO)_{12}$ (2) werden in 100 ml Toluol unter Rückfluß gekocht. Nach einem Tag hat sich 6a vollständig umgesetzt. Die Reaktion wird abgebrochen und das Lösungsmittel im Ölpumpenvakuum abgezogen. Der Rückstand wird in 10 ml CH_2Cl_2 aufgenommen und über eine MPLC-Säule chromatographiert. Mit Hexan/ CH_2Cl_2 (1/1) wird rotbraunes 8 eluiert. Die analytischen und spektroskopischen Daten von 8 sind mit denen des nach 3. erhaltenen Produktes identisch. Ausbeute: 150 mg (17% bez. 6a).

	3a	Sb	8	6
Kristallsystem	triklin	monoklin	monoklin	monoklin
Raumgruppe	<i>P</i> 1 (Nr. 2)	P2, /c (Nr. 14)	$P2_{1} / c$ (Nr. 14)	P2, /c (Nr. 14)
Farbe	schwarz	schwarz	schwarz	schwarz
Gitterkonstanten	1306.2, 1496.6,	1098.7(5), 1483.6(6),	1622.2(4), 1040.9(3)	1696(1), 1170(1).
(pm; °)	1534.6;	2125.8(8);	2006.7(4);	2028(2);
	66.46, 67.59, 64 06	104.73(3)	100.74(2)	113.24(7)
		the second se		
$Z; V(pm^{2}); F(000)$	$2; 2409 \times 10^{\circ}$	$4;3351 \times 10^{\circ};1966$	$4; 3329 \times 10^{\circ}; 2072$	4; 3698×10°; 2312
a_{ro} (g cm ⁻²), μ (cm ⁻¹)		2.00, 24.6	2.13, 40.3	2.15, 40.2
Kristallabmessungen (mm ³)	$0.17 \times 0.17 \times 0.57$	$0.1 \times 0.1 \times 0.1$	$0.08 \times 0.25 \times 0.3$	$0.23 \times 0.3 \times 0.34$
Mo- K_{α} -Strahlung (pm)	71.073	71.073	71.073	71.073
Meßbereich: Θ	$3 < 269 < 56.5^{\circ}$	$3 < 269 < 49^{\circ}$	3 < 269 < 57.7°	$3 < 2.00 < 50^{\circ}$
h, k, l	0/18, -20/20, -21/21	0/13, 0/18, -25/25	0/22, 0/15, -28/28	-20/20, 0/20, 0/24
Scan		σ	U	
beobachtete Reflexe	7309	3508	5289	3517
unabhängige verm. Reflexe	6487	3018	4593	3167
Absorptionskorrektur	7 Reflexe	7 Reflexe	5 Reflexe	6 Reflexe
(<i>\phi</i> -scans, Z.d. Refl., <i>\Observence</i> -bereich)	$6 < 2.0 < 51^{\circ}$	$5.8 < 2.00 < 43.4^{\circ}$	$5 < 269 < 36^{\circ}$	5 < 2 6 < 33°
Gerät (Graphitmonochromator,		Syntex R3	Syntex R3	AED-II, Siemens-
Microvax II)				Stoe-Diffraktion
Verfeinerung der				
Nicht-Wasserstoffatome		anisotrop	anisotrop	ansisotrop
Wasserstoffatome		нғіх [17]	нгіх [17]	HFIX [17]
shift∕esd (max)		0.06	0.067	0.051
Restelektronendichte (e/ \dot{A}^3)		0.75/0.69	0.71/0.74	0.82/-0.51
$\boldsymbol{R}, \boldsymbol{R}_{w} = [\boldsymbol{\Sigma} \boldsymbol{w}(F_{o} - F_{c})^{2} /$		0.055, 0.044	0.053, 0.04	0.041, 0.033
(ΣWF_0^2)] ^{1/2} , R _{merge}		0.032	0.027	
$GOOF = [\Sigma w(F_0] - F_c)^2 / (NO - NV)]$		1.41	1.5	1.47
Strukturermittlung	Patterson-, Fourier-, Differenzf	ourier-Synthesen,		
	Programmsystem sherxtr [16];	Atomformfaktoren aus der Liter	ratur [17]	

Tabelle 7 Kristallographische Daten der Spezies **3a, 5b, 8** und 9 5. Kophotolyse von $As_2Cp'_2Mo_2(CO)_4$ (6b) mit $Fe_2(CO)_9$ (7); Darstellung von $As_2Cp'_2Mo_2Fe_4(CO)_{17}$ (9)

Eine Lösung von 0.5 g (0.82 mmol) As $_2Cp'_2Mo_2(CO)_4$ (**6b**) und 1 g (2.75 mmol) Fe $_2(CO)_9$ (7) wird in 250 ml THF in einer Photolyseapparatur bestrahlt. Dabei wechselt die Farbe der Lösung von orange nach grünbraun. Nach 2 h bei – 10°C wird die Photolyse abgebrochen und das Lösungsmittel im Ölpumpenvakuum abgezogen. Der Rückstand wird in 10 ml CH $_2Cl_2$ gelöst und über eine gekühlte MPLC-Säule (– 20°C) getrennt.

Mit Hexan/CH₂Cl₂ (1/1) eluiert man braunes As₂Cp'₂Mo₂Fe₄(CO)₁₇ (9). Danach sind noch drei sehr dünne Fraktionen auf der Säule zu beobachten, die aufgrund ihrer geringen Menge nicht aufgefangen wurden. Durch Umkristallisieren von 9 in Hexan/CH₂Cl₂ (2/1) können schwarze Kristalle erhalten werden. Ausbeute: 80 mg (8% bez. **6b**). Fp.: 185°C (Zers.); FD-MS: 1199 (M^+); IR (KBr, cm⁻¹): 2056st, 2027vst, 2006vst, 1972vst, 1955vst, 1921st (CO); 847 (CH), ¹H-NMR (CDCl₃, 298 K, δ /ppm): 5.62, 5.33 (je s), 2.08 (s). Gef.: C, 29.87; H, 1.02; C₂₉H₁₄As₂Fe₄Mo₂O₁₇ (1199.4) ber.: C, 29.04; H, 1.17%.

Röntgenographische Daten *

Siehe Tab. 7.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247) und dem Fonds der Chemischen Industrie für die Gewährung von Sach- und Personalmitteln. Frau Priv. Doz. Dr. E. Hey-Hawkins danken wir für die Hilfe bei der Erarbeitung des Manuskripts.

Literatur

- 1 K. Blechschmitt, H. Pfisterer, T. Zahn und M.L. Ziegler, Angew. Chem., 97 (1985) 73; Angew. Chem., Int. Ed. Engl., 24 (1985) 66.
- 2 (a) M.L. Ziegler, K. Blechschmitt und B. Nuber, T. Zahn, Chem. Ber., 121 (1988) 159; (b) H.P. Neumann und M.L. Ziegler, Chem. Ber., 122 (1989) 25; (c) H.P. Neumann und M.L. Ziegler, J. Organomet. Chem., 377 (1989) 255; (d) M. Gorzellik, B. Nuber, T. Bohn und M.L. Ziegler, J. Organomet. Chem., 429 (1992) 173.
- 3 C. Caballero, D. Lehne, B. Nuber und M.L. Ziegler, Chem. Ber., 124 (1991) 1327.
- 4 H. Lang, G. Huttner, L. Zsolnai, G. Mohr, B. Sigwarth, U. Weber, O. Orama und 1. Jibril, J. Organomet. Chem., 304 (1986) 157.
- 5 (a) C.H. Wei und L.F. Dahl, J. Am. Chem. Soc., 91 (1969) 1351; (b) F.A. Cotton und J.M. Troup, J. Am. Chem. Soc., 96 (1974) 4155; (c) F.A. Cotton und J.M. Troup, J. Am. Chem. Soc., 96 (1974) 5070.
- 6 K. Wade, New Sci., (1974) 615.
- 7 M.H. Chisholm (Hrsg.), Reactivity of Metal-Metal Bonds, DCS Symposium Series 155.
- 8 L.T.J. Delbaere, L.J. Kruczynski und D.W. McBride, J. Chem. Soc., Dalton Trans., (1973) 307.
- 9 P. Jutzi und R. Kross, Chem. Ber., 121 (1988) 1399.

^{*} Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56077, der Autoren sowie des Zeitschriftenzitats angefordert werden.

- 10 K.H. Whitmire, K.S. Raghuveer, M.R. Churchill, J.C. Fettinger und R.F. See, J. Am. Chem. Soc., 108 (1986) 2778.
- 11 H.J. Langenbach, E. Röttinger und H. Vahrenkamp, Chem. Ber., 113 (1980) 42.
- 12 S.A. McLaughlin, N.J. Taylor und A.J. Carty, Inorg. Chem., 22 (1983) 1409.
- 13 M.M. Mickiewitz, C.L. Raston, A.H. White, S.B. White und S.B. Wild, Aust. J. Chem., 30 (1977) 1685.
- 14 D.F. Shriver, The Manipulation of Air Sensitive Compounds, Mc Graw-Hill, New York, 1969.
- 15 Eine Abbildung der Apparatur befindet sich in: G. Brauer (Hrsg.), Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag, Stuttgart, 1981, S. 1807.
- 16 W. Sheldrick, shelxtl-Programm, Universität Göttingen, 1983.
- 17 International Tables for X-Ray Crystallography, Vol. 4, The Kynoch Press, Birmingham, 1974.